K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

a, \(=>n^2-n-4n+4-3⋮\left(n-1\right)\)

\(=>n\left(n-1\right)-4\left(n-1\right)-3⋮\left(n-1\right)\)

=> (n-1) là ước của 3; Mà Ư(3) = 1;-1;3;-3 nên ta có:

\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=3\\n-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=4\\n=-2\end{matrix}\right.\)

b, \(=>2n^2+2n-2n-3⋮\left(n+1\right)\)

\(=>2n\left(n+1\right)-2\left(n+1\right)-1⋮\left(n+1\right)\)

=>(n+1) là ước của 1; mà Ư(1)= 1;-1 nên ta có:

\(\left[{}\begin{matrix}n+1=1\\n+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-2\end{matrix}\right.\)

c, \(=>-3n+12=-\left(3n+3\right)+15⋮\left(n+1\right)\)

=>(n+1) là ước của 15;

Bạn làm tương tự nhé;

CHÚC BẠN HỌC TỐT.........

30 tháng 11 2015

Ta có : 7n-4 chia hết cho n+1

=> 7n-4=7n+7-11 chia hết cho n+1

Do 7n+7 chia hết cho n+1  nên 11 chia hết cho n+1

=> n+1  thuộc Ư(11)={1;11;-1;-11}

=> n thuộc{0;10;-2;-12}

Vậy n thuộc {0;10;-2;-12}

Câu b tương tự

10 tháng 1 2018

a)          \(n+1\)\(⋮\)\(n-1\)

\(\Leftrightarrow\)\(n-1+2\)\(⋮\)\(n-1\)

Ta thấy  \(n-1\)\(⋮\)\(n-1\)

nên  \(2\)\(⋮\)\(n-1\)

hay  \(n-1\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta lập bảng sau:

\(n-1\)   \(-2\)        \(-1\)          \(1\)          \(2\)

\(n\)            \(-1\)           \(0\)           \(2\)           \(3\)

Vậy..

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)