K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

a/ 

\(A=\frac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2}{n^2+2}=n^2+3n-\frac{2}{n^2+2}\)

A nguyên => \(\frac{2}{n^2+2}\) nguyên \(\Rightarrow n^2+2\in\text{Ư}\left(2\right)=\left\{-1;1;2;-2\right\}\)

Do \(n^2+2\ge2\) nên \(n^2+2=2\Leftrightarrow n=0\)

Vậy n = 0 thì A nguyên.

b/ Ta chứng minh \(B=n^5-n+2\) không là số chính phương với mọi n.

Xét \(M=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Nhận xét: n và n+1 là 2 số nguyên liên tiếp nên tích của chứng chia hết cho 2 => M⋮2

+Nếu n⋮5 thì M⋮5.
+Nếu n chia 5 dư 1 thì (n-1)⋮5 => M⋮5.
+Nếu n chia 5 dư 2 thì n2 chia 5 dư 4 => (n2+1)⋮5 => M⋮5.
+Nếu n chia 5 dư 3 thì n2 chia 5 dư 9 tức dư 4 => (n2+1)⋮5 => M⋮5
+Nếu n chia 5 dư 4 thì (n+1)⋮5 => M⋮5

Vậy M⋮5

Suy ra M⋮10 với mọi số tự nhiên n

=> M có tận cùng là 0.

=> B = M+2 có tận cùng là 2.

Mà số chính phương chỉ có tận cùng là 0; 1; 4; 6; 9

=> B không phải là số chính phương với mọi n.

 

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath