Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
- n-1=-1=>n=0
- n-1=1=>n=2
- n-1=-3=>n=-2
- n-1=3=>n=4
do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
- n+1=1=>n=0
- n+1=-1=>n=-2
- n+1=5=>n=4
- n+1=-5=>n=-6
do n thuộc N nên : các giá trị n la : {0;4}
a, n + 3 \(⋮\)n - 2
\(\Rightarrow\) n + 3 - n + 2 \(⋮\)n - 2
\(\Rightarrow\)5 \(⋮\) n - 2
\(\Rightarrow\) n \(\in\){3; 1; 7; -3 }
CÁC PHẦN TIẾP THEO THÌ TƯƠNG TỰ
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
\(a,n+2⋮n-1\)
\(\Rightarrow n-1+3⋮n-1\)
\(n-1⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ\left(3\right)\)
\(\Rightarrow n-1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{0;2;-2;4\right\}\) mà n thuộc N
\(\Rightarrow n\in\left\{0;2;4\right\}\)
b, \(2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\)
đến đây lm tp như phần a
\(a,n+2⋮n-1\)
\(\Leftrightarrow\left(n-1\right)+3⋮n-1\)
Vì \(\hept{\begin{cases}n-1⋮n-1\\n+2⋮n-1\end{cases}\Rightarrow3⋮n-1\Leftrightarrow n-1\in}U\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)
Mà \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
Vậy \(n\in\left\{0;2;4\right\}.\)
\(b,2n+7⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(\hept{\begin{cases}2\left(n+1\right)⋮n+1\\2n+7⋮n+1\end{cases}\Rightarrow}5⋮n+1\Leftrightarrow n+1\in U\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-5;-2;0;4\right\}\)
Mà \(n\in N\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}.\)