Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
\(a,\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
Để \(n+5⋮n+2\) thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng ( tự xét nha )
KL..
\(b,\frac{2n+3}{n-2}=\frac{2\left(n-2\right)+7}{n-2}=2+\frac{7}{n-2}\)
Giải các ý khác tương tự như trên
Ta có n+5=n+2+3
Để n+5 chia hết cho n+2 thì n+2+3 chia hết cho n+2
Mà n thuộc n => n+2 thuộc N
=> n+2 thuộc Ư (5)={1;5}
Nếu n+2=1 => n=-1 (ktm)
Nếu n+1=5 => n=4(tm)
Vậy n=4 thì n+5 chia hết cho n+2
b) Ta có 2n+3=2(n-2)+7
Để 2n+3 chia hết cho n-2 thì 2(n-2)+7 chia hết cho n-1
n thuộc N => n-1 thuộc N
=> n-1 thuộc Ư (7)={1;7}
Nếu n-1=1 => n=2(tm)
Nếu n-1=7 => n=8 (tm)
a)Ta có: n+4 chia hết cho n
Mà n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
=> n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha)
Vậy n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha).
b)Ta có: n+5 chia hết cho n+1
=> (n+1) +4 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)
=> n+1 thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
=> n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
Vậy n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Gợi ý :
a) 7 chia hết cho n
b) 5 chia hết cho n-2
c) 2 chia hết cho n+1
d)17 chia hết cho
a)3n+7:n=\(3\frac{7}{n}\) đêr 3n+7 chia hết cho n thì 7 phải chia hết cho n
mà n thuộc N nên n=7 hoặc n=1
b) 2n+3:n-2\(\frac{2n-4+7}{n-2}=2\frac{7}{n-2}\) để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
mà n thuộc N nên n-2=7 hoắc n-2=1
=> n=9 hoặc n=3
c) n+3 :n+1=\(\frac{n+1+2}{n+1}=1\frac{2}{n+1}\) để n+3 chia hết cho n+1 thì n+1 phải thuộc ước của 2
mà n thuộc N nên n+1=2 hoặc n+1=1
=> n=1 hoặc n=0
d) 3n+1:11-2n=