Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim n thuoc N de:
A= 6n-3/4n-6 co GTLN
Trinh bay cach lam nua nha
Trong doi vao cac ban rat nhieu
Thanks
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)
b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất
\(\Rightarrow n+1\) bé nhất và n+1>0
\(\Rightarrow n+1=1\Rightarrow n=0\)
Nên GTNN của A=-1
\(D=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
để D đạt giá trị nhỏ nhất thì \(\frac{5}{3n-2}\) lớn nhất
=> 3n - 2 là số nguyên dương nhỏ nhất
=> 3n - 2 = 1
=> 3n = 3
=> n = 1
vậy n = 1 và \(D_{max}=2-\frac{5}{1}=-3\)
\(D=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}\)
Để D nhỏ nhất thì \(\frac{5}{3n+2}\)lớn nhất
\(\Rightarrow\hept{\begin{cases}3n+2>0\\3n+2max\end{cases}^2}\)
\(\Rightarrow3n+2=5\)
\(\Rightarrow n=1\)
Vậy n=1 thì D đạt giá trị nhỏ nhất
a) 5 - x + 12 = 4 + x + 1
17 - x = 5 + x
x - (-x) = 17 - 5
2x = 12
x = 6
b) 4x - 5 + (-15) = 3x - 10
4x - 20 = 3x - 10
3x - 4x = -20 + 10
-x = -10
x = 10
a)
5 - x + 12 = 4 + x + 1
17 - x = 5 + x x - (-x)
= 17 - 5 2x
= 12 x
= 6 b)
4x - 5 + (-15)
= 3x - 10 4x - 20
= 3x - 10 3x - 4x
= -20 + 10 -x
= -10 x = 10