K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NP
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MX
2
12 tháng 3 2017
\(x^3y^4+2x^3y^4+3x^3y^4+....+nx^3y^4=820x^3y^4\)
\(\Leftrightarrow x^3y^4\left(1+2+3+....+n\right)=820x^3y^4\)
\(\Leftrightarrow1+2+3+....+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640=40.41\)
\(\Rightarrow n=40\)
TH
1
12 tháng 3 2017
Đặt \(A=x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4\)
\(A=x^3y^4\left(1+2+3+...+n\right)\)
Lại có:\(A=820x^3y^4\)
\(\Rightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)
\(\Rightarrow1+2+3+...+n=820\)
\(\Rightarrow\dfrac{\left(n+1\right)n}{2}=820\)
\(\Rightarrow\left(n+1\right)n=1640\)
\(\Rightarrow\left(n+1\right)n=41\cdot40\)(vì \(n\in N\) nên ta không xét trường hợp âm)
\(\Rightarrow n=40\)
Vậy n=40
HH
1
NN
2
TT
2
DT
1
NV
0
Ta có: x3y + 2x3y + 3x3y + ... + nx3y = 20100x3y
=> x3y(1 + 2 + 3 + ... + n) = 20100x3y
=> (n + 1)[(n - 1) : 1 + 1] : 2 = 20100
=> (n + 1)n = 40200
=> n2 + n - 40200 = 0
=> n2 + 201n - 200n - 40200 = 0
=> (n + 201)(n - 200) = 0
=> \(\orbr{\begin{cases}n+201=0\\n-200=0\end{cases}}\)
=> \(\orbr{\begin{cases}n=-201\left(ktm\right)\\n=200\left(tm\right)\end{cases}}\)