Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 6n + 5 chia hết cho 2n - 1
<=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3(2n - 1) + 8 chia hết cho 2n - 1
<=> 8 chia hết cho 2n - 1
<=> 2n - 1 thuôc Ư(8) = ......
=> 2n = .......
=> n = ......
Ta có : 6n + 3 chia hết cho 4n + 1
<=> 2(6n + 3) chia hết cho 4n + 1
<=> 12n + 6 chia hết cho 4n + 1
<=> 12n + 3 + 3 chia hết cho 4n + 1
<=> 3(4n + 1) + 3 chia hết cho 4n + 1
<=> 3 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(3)
tự giải tiếp
Ta có : n+13=(n-5) + 8
Suy ra :(n-5) + 8 chia hết cho n-5
Ta có : ( n-5 ) chia hết cho n-5 mà (n-5 ) + 8 chia hết cho n-5 . Vậy 8 chia hết cho n-5
Suy ra : n-5 thuộc Ư ( 8 )
Suy ra : n-5 thuộc { 1 ;2;4;8}
Suy ra : n thuộc {6;7;9;13}
2 ) ta có : n+3 chia hết n
Mà ta có n chia hết cho n mà n+3 chia hết cho n . Vậy 3 chia hết cho n
Suy ra: n thuộc Ư (3)
Suy ra : n thuộc { 1 ;3 }
Ta có :
6n + 5 = 6n + 3 + 2 = 3 . ( 2n + 1 ) + 2
vì 2n + 1 \(⋮\)2n + 1 \(\Rightarrow\)3 . ( 2n + 1 ) \(⋮\)2n + 1 nên để 6n + 5 \(⋮\)2n + 1 thì 2 \(⋮\)2n + 1
\(\Rightarrow\)2n + 1 \(\in\)Ư ( 2 ) = { 1 ; -1 ; 2 ; -2 }
Lập bảng ta có :
2n+1 | 1 | -1 | 2 | -2 |
n | 0 | -1 | 1/2 | -3/2 |
Vì n thuộc Z nên n \(\in\){ 0 ; -1 }
vậy n \(\in\){ 0 ; -1 }
6n -5 \(⋮\)2n - 1
<=> 3(2n - 1) - 2 \(⋮\)2n - 1
<=> 2 \(⋮\)2n - 1
<=> 2n - 1\(\in\)Ư(2) = {-1; 1; -2; 2}
Lập bảng:
Vậy n = {0; 1}