Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\cdot\frac{2n+2}{2n+3}\)
\(=\frac{2n+2}{4n+6}=\frac{2\left(n+1\right)}{2\left(2n+3\right)}=\frac{n+1}{2n+3}\)
\(\RightarrowĐPCM\)
Ta có:
Số số hang của tổng S là :(2n-1-1):2+1=n (số hạng)
Vậy tổng S bằng:(n/2)x(2n-1+1)=nxn=n2
Vậy tổng S là bình phương của số n
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3
=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }
=> n - 3 = { 1 ; 7 }
=> n = { 4 ; 11 }
b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1
=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }
=> n + 1 = { 1 ; 2 ; 4 }
=> n = { 0 ; 1 ; 3 }
a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp
a) ta có Ư (7) = (-1;+1;-7;+7)
xét các trường hợp :
1: 2n + 1 = -1 => n= (-1) -1 :2=-1
2: 2n + 1 = 1 => n= 1 -1 : 2 = 0
3: 2n + 1 = -7 => n= -7 -1 : 2 = -3
4: 2n + 1 = 7 => n= 7 -1 : 2 = 3
mỏi quá trường hợp còn lại q1 tự sét nha
Câu a, trên làm rồi và câu b làm tương tự mk làm các câu sau nha
c) ta có n-6 chia hết cho n-6
=>n-6-(n+5) chia hết cho n-6
=>-11 chia hết cho n-6
Làm tương tự
de lắm do tra loi di
cac bn
n=?????
hihi
=> n=bao nhieu
Mk chỉ mới lớp 5 thôi.Nên bó tay @.com