Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương
\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)
\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)
Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:
\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.
Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)
\(\Rightarrow3y^2+3y+1=2n+5\)
Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:
\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)
Vì nguyên dương nên nhận y=2--->n=7
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 ﴾1﴿
3a +1 = m^2 ﴾2﴿
từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1
=> a = 2k﴾k+1﴿
vậy a chẵn .
a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1
﴾1﴿ + ﴾2﴿ được:
5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1
=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿
mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿
=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 ﴾1﴿
3a +1 = m^2 ﴾2﴿
từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1
=> a = 2k﴾k+1﴿
vậy a chẵn .
a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1
﴾1﴿ + ﴾2﴿ được:
5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1
=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿
mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿
=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
\(-2n+9\) là số nguyên tố
\(\Rightarrow\)\(-2n+9>0\)
\(\Rightarrow\)\(2n< 9\)
\(\Rightarrow\)\(n< 4,5\)
do \(n\in N\) \(\Rightarrow\)\(n=\left\{1,2,3,4\right\}\)
Với \(n=1\)\(\Rightarrow\)\(2n+1=3\) ko phải số chính phương (loại)
Với \(n=2\)\(\Rightarrow\)\(2n+1=5\)ko phải số chính phương (loại)
Với \(n=3\)\(\Rightarrow\)\(3n+1=10\)ko phải số chính phương (loại)
Với \(n=4\) \(\Rightarrow\)\(3n+1=13\)ko phải số chính phương (loại)
Vậy ko tìm đc \(x\in N\)thỏa mãn: 2n+1; 3n+1 là số chính phương và -2n+9 là số nguyên tố
bài khó à nha
ko dễ