Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với n = 1 thì S = 1! = 1 = 12, là số chính phương, chọn
+ Với n = 2 thì S = 1! + 2! = 1 + 2 = 3, không là số chính phương, loại
+ Với n = 3 thì S = 1! + 2! + 3! = 3 + 6 = 9 = 32, là số chính phương, chọn
+ Với n = 4 thì S = 1! + 2! + 3! + 4! = 9 + 24 = 33, không là số chính phương, loại
+ Với n > hoặc = 5 thì S = 1! + 2! + 3! + 4! + 5! + ... + n!
S = 33 + 5! + ... + n!
Ta thấy các giai thừa từ 5! trở đi đều có tận cùng là 0 nên trong trường hợp này S = (...3), không là số chính phương, loại
Vậy n = 1 và n = 3
( n + 1 ) n : 2 = aaa
( n + 1 ) n : 2 = a . 111 = a . 37 . 3
=> Trong biểu thức trên tồn tại số 37 và 1 số chia hết cho 3
Giả sử n = 37
=> n + 1 = 38
Mà 38 không chia hết cho 3
=> n+1 = 37
=> n = 36
Mà 36 chia hết cho 3 <=> giá trị n đúng
Với n = 36 và n + 1 = 37 ta được ( n + 1 ) . n : 2 = 37 . 36 : 2 = 666
=> a = 6
Vậy n = 36 và a = 6
cha ôi, bài ni thầy nho ra cho lờn ruồi mak cụng đi hỏi, k bt mi hk hành kiểu chi