Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2+n+6=a^2\)
\(\Leftrightarrow4n^2+4n+24=4a^2\)
\(\Leftrightarrow4n^2+4n+1+23=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)
\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
Vậy n = 5
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left[\left(n^2-4\right)+5\right]\)
\(=\)\(n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Lại có : \(n\in N\)
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số tự nhiên liên tiếp
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)
Mà \(5\left(n-1\right)n\left(n+1\right)⋮10\)
=> \(n^5-n⋮10\)
=> \(n^5-n\)có chữ số tận cùng là 0
=> A có chữ số tận cùng là 2
=> A ko phải là số chính phương
Vậy ko tìm được giá trị nào của n thỏa mãn đề bài
Giả sử: \(9^n+63=x^2\)
+) Xét n=2k+1 (lẻ):
\(9^{2k+1}+63=9^{2k}.9+63\equiv\left(-1\right)^{2k}.9+3\equiv2\)(mod 5) -> vô lí vì scp không đòng dư với 2 mod 5 -> n=2k
+) Xét n=2k:
\(9^{2k}+63=x^2\Leftrightarrow x^2-9^{2k}=63\Leftrightarrow\left(x-9^k\right)\left(x+9^k\right)=63\)
Đến đây bạn lập bảng là ra nhé!
Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)
\(=\left(n^2+1\right)\left(2n^2+1\right)\)
Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)
\(\Rightarrow2n^2+1⋮n^2+1\)
\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)
\(\Rightarrow-1⋮n^2+1\)
Mà \(n^2+1>0\)
\(\Rightarrow n^2+1=1\Rightarrow n=0\)
n = 5 nha bạn
\(5^2+5+6=36\\ 36=6^2\)
Ta có
n2 < n2 + n + 6 < n2 + 3n + 9
<=> n2 < n2 + n + 6 < (n + 3)2
<=> (n2 + n + 6) = [(n + 1)2; (n + 2)2]
Thế vô tìm được n = 5