K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

27 tháng 9 2015

x=1

y=2

z=3

hay ngược lại hay .......

26 tháng 4 2017

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

21 tháng 2 2017

Đề bài này khả năng sai nhé, chắc là <= vì gần như tích nào cũng lớn hơn tổng cả

SỬA LẠI: <=

Ta có: \(xyz\le x+y+z\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge1\)

Vai trò của x,y,z như nhau nên giả sử: \(x\ge y\ge z\Rightarrow xy\ge xz\ge yz\)

Vậy: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{3}{yz}\Leftrightarrow\frac{3}{yz}\ge1\Leftrightarrow3\ge yz\)

Vậy yz=1, yz=2, yz=3

TH1: yz=1 => y=z=1 thay vào ta được x=1

TH2: yz=2 => z=1, y=2

Thay vào có: \(2x\le x+3\Leftrightarrow x\le3\)

=> x=2 hoặc x=3

Thử lại thấy thỏa mãn

TH3: zy=3 => z=1, y=3

Thay vào ta được: \(3x\le x+4\Leftrightarrow x\le\frac{3}{2}\)loại do x>=y

Vậy (x,y,x)=(1,1,1); (3,2,1);(2,2,1)