K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

25 tháng 3 2021

hello l am Duong quang minh, nice to meet you, how old are you, l am nine how do you spell your name ,m-i-n-h 

4 tháng 7 2017

đơn con nhà bà giản

đặt A=a2

xét n=2k

=>32k+19=a2

=>(a-3k)(a+3k)=19

từ đó thì dễ dàng tìm được k;a=>n=...

xét n=2k+1

=>3n+19=9k.3+19

9 đồng dư với 1(mod 4)

=>9k đồng dư với 1(mod 4)

=>9k.3 đồng dư với 3(mod 4)

=>A đồng dư với 2(mod 4)

mà A là số chính phương=>A chia 4 dư 0;1

=>A không tồn tại khi n=2k+1

KL...

23 tháng 8 2017

Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp. 
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31. 
2) Tóm tắt thôi nhé. 
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10 
Số mới sau khi đổi chỗ là 10b + a 
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36 
được a = 7; b = 3. Vậy số cần tìm là 73. 
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5 
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a 
=> 9a = 1782 => a = 198 => Số ban đầu là 1985

9 tháng 8 2020

Ta đặt: \(3^n+19=a^2\)     (Với a thuộc N)

TH1: Nếu n lẻ thì ta cho \(n=2m+1\)=> \(3^n+19=3^{2m+1}+19=9^m.3+19\)

Có \(9^m\)chia 4 dư 1 => \(9^m.3\)chia 4 dư 3 => \(9^m.3+19\): 4 dư 2

=> \(a^2\)chia 4 dư 2. Nma đây là 1 điều cực vô lí do 1 SCP chỉ : 4 dư 0 hoặc 1

=> n phải chẵn => \(n=2k\)

=> \(9^k+19=a^2\)

<=> \(\left(a-3^k\right)\left(a+3^k\right)=19\)

=> \(a-3^k;a+3^k\)đều là Ư(19). Do \(a-3^k;a+3^k\)là 2 số cùng dấu và \(a+3^k>0\)

=> \(a-3^k>0\)   . Và ta còn thấy do a; k thuộc N nên \(a-3^k< a+3^k\)

=> Ta chỉ xét duy nhất 1 TH là: \(a-3^k=1;a+3^k=19\)

=> Cộng lại ta đc: \(2a=20\)    <=> \(a=10\)    <=> \(n=4\)

Vậy n có nghiệm duy nhất là 4 thì \(3^n+19\) là 1 SCP.

9 tháng 8 2020

Đặt \(A=3^n+19\)

Ta thấy : \(3^n\) lẻ => \(3^n+19\) chẵn . Nên để A là SCP thì A phải chia hết cho 4

Mà 19 : 4 dư 3 => 3n chia 4 dư 1 ( 1 )

+) Nếu n lẻ = 2a + 1 ( a chẵn ) thì \(3^{2a+1}=3.3^{2a}=3.\left(3^2\right)^a=3.9^a=3.\left(8+1\right)^a\) chia 4 dư 3 trái với khẳng định ( 1 )

Vậy phải chẵn và có dạng 2k

Ta có : \(A=3^{2k}+19\)

+) Nếu k = 0 => A = 20 không phải là SCP ( loại )

+) Nếu k = 1 => A = 28 không phải là SCP ( loại )

+) Nếu k = 2 => A = 100 là SCP ( chọn )

+) Nếu k lớn hơn hoặc bằng 3 thì \(\left(3^k\right)^2< A=\left(3^k\right)^2+19< \left(3^k\right)^2+6k+1=\left(3^k+1\right)^2\)

Vì A nằm giữa 2 SCP liên tiếp 3k và 3k + 1 nên A không thể là SCP => Loại

Vậy với duy nhất  n = 2k = 4 thì 3n + 19 là số chính phương