K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a,n2+3n+3 chia hết cho n+1

=>n2+n+2n+2+1 chia hết cho n+1

=>n(n+1)+2(n+1)+1 chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 E Ư(1)={1;-1}

=>n E {0;-2}

b, n2+4n+2 chia hết cho n+2

=>n2+2n+2n+4-2 chia hết cho n+2

=>n(n+2)+2(n+2)-2 chia hết cho n+2

=>2 chia hết cho n+2

=>n+2 E Ư(2)={1;-1;2;-2}

=>n E {-1;-3;0;-4}

c, n2-2n+3 chia hết cho n-1

=>n2-n-n+1+4 chia hết cho n-1

=>n(n-1)-(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

14 tháng 1 2018

Cảm ơn nha ko có bạn chắc thầy cắt tiết mik rùi

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 1

Tự làm đi, chắc là BTVN được giao hả, phải luyện


22 tháng 7 2015

-11 là bội của n-1

=> -11 chia hết cho n-1

=> n-1 thuộc Ư(-11)

n-1n
12
-10
1112
-11-10

KL: n thuộc......................

22 tháng 7 2015

nhìu qá bn ơi (kq thui đc k)

5 tháng 11 2017

4n+3=4n-1+4

vì 4n+3 chia het cho n-1

mà n-1 chia hết cho n -1 

=>4 chia het cho n- 1

=>4 thuộc U[4]={1 ,2 ,4}

=>n=2,n=3,n=5

Để \(n^2+2n+7⋮n+2\)

\(\Rightarrow n\left(n+2\right)+7⋮n+2\)

Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)

Để \(n^2+1⋮n-1\)

=> \(n^2-1+2⋮n-1\)

\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)

\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)

=> (n - 1)(n + 1) + 2\(⋮n-1\)

Vì (n - 1)(n + 1) \(⋮n-1\)

=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)

Để \(n^2+2n+6⋮n+4\)

=> \(n^2+4n-2n-8+14⋮n+4\)

=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)

=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)

Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)

=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)

Để n2 + n + 1 \(⋮n+1\)

 => \(n\left(n+1\right)+1⋮n+1\)

Vì \(n\left(n+1\right)⋮n+1\)

=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)

10 tháng 1 2018

a)          \(n+1\)\(⋮\)\(n-1\)

\(\Leftrightarrow\)\(n-1+2\)\(⋮\)\(n-1\)

Ta thấy  \(n-1\)\(⋮\)\(n-1\)

nên  \(2\)\(⋮\)\(n-1\)

hay  \(n-1\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta lập bảng sau:

\(n-1\)   \(-2\)        \(-1\)          \(1\)          \(2\)

\(n\)            \(-1\)           \(0\)           \(2\)           \(3\)

Vậy..

12 tháng 12 2018

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)

\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)

12 tháng 12 2018

\(2n-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)

\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)