Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/x+1/y+1/z=0
=>1/x+1/y=-1/z
=>(1/x+1/y)^3= (-1/z)^3
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z)
Mặt khác: 1/x+1/y+1/z=0
=>(xy+yz+zx)/(xyz)=0
=>xy+yz+zx=0
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0)
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0)
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) )
=3
Vậy A=3.
\(x^2+y^2+z^2-xy-3y-2z+4\ge0\)
\(\Leftrightarrow\)\(4x^2+4y^2+4z^2-4xy-12y-8z+16\ge0\)
\(\Leftrightarrow\)\(\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+\left(4z^2-8z+4\right)\ge0\)
\(\Leftrightarrow\)\(\left(2x-y\right)^2+3\left(y-2\right)^2+2\left(z-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
Nhưng lâu lâu mk ms lên máy tính bàn ms gõ chữ đc thôi, còn h mk onl=ipad nên chụp hình gửi trả lời, thế mà cx bị cấm???
Áp dụng bđt côsi cho 2 số dương lần lượt ta có :
\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)
\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)
\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)
Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)
Dấu = xảy ra khi : \(1=\frac{y}{x}\)=> x=y và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z
=> x=y=z
Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).