K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LP
0
CA
0
V
0
PD
1
28 tháng 2 2018
Ta có: \(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
\(\Rightarrow n^4+n^3+n^2+n+1=\left(n+1\right)^4\)
\(\Leftrightarrow n=0\)
Vậy n = 0 (thỏa mãn đề bài)
P/s: không biết đúng không, làm bừa
YN
11 tháng 9 2021
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
TQ
0
Ko chắc nhé !
#Anh#
+) n > 2 hoặc n < -3
A = n^4 + 2n³ + 2n² + n + 7
= (n² + n)² + n² + n + 7
mà n² + n + 7 = (n + 1/2)² + 27/4
=> A > (n² + n)²
Xét (n² + n + 1)² - A
= n^4 + n² + 1 + 2n³ + 2n² + 2n - n^4 - 2n³ - 2n² - n - 7
= n² + n - 6
= (n - 2)(n + 3) > 0
=> (n² + n)² < A < (n² + n + 1)²
=> A không phải số chính phương
Để A là số chính phương
-3 ≤ n ≤ 2
=> n thuộc {-3;-2;-1;0;1;2;3}
Thay các giá trị của n vào A
với A = -3 => A = 49
A = 2 => A = 49