Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
3n = (3n + 3) + (-3) =3(n +1) + (-3)
Vì n+1 chia hết cho n+1 nên 3(n+1) chia hết cho n+1
Để 3n là bội của n+1 thì -3 chia hết cho n+1 hay n+1 thuộc Ư(-3)
Suy ra n+1 thuộc {1;3;-3;-1}
Nếu n+1=1
=> n=1-1=0
Nếu n+1 =-1
=>n=-1-1=-2
Nếu n+1=3
=>n=3-1=2
Nếu n+1=-3
=> n=-3-1=-4
Vậy x thuộc {0;2;-2;-4}
Câu b) bạn làm giống câu a nhé
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
Ta có :
3n+5 \(⋮\)n-4
Mà 3(n-4) hay 3n-12 \(⋮\)n-4
\(\Rightarrow\left(3n+5\right)-\left(3n-12\right)⋮n-4\)
\(17⋮n-4\)
\(\Rightarrow n-4\inƯ\left(17\right)\)
Còn lại tự lm nha.
HT
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
n^2+3n-5 là bội của n-2
=> n^2+3n-5 chia hết cho n-2
=> n^2-2n+5n-10+5 chia hết cho n-2
=> n(n-2)+5(n-2)+5 chia hết cho n-2
Vì n(n-2) và 5(n-2) chia hết cho n-2
=> 5 chia hết cho n-2
=> n-2 là ước của 5
Xong tự tìm n nhaaaaaaaaaaaaa !!!