Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 chia hết cho n+5 ==> n+5 thuộc Ư(3)={-1;1;-3;3}
==> n+5=-1 ==> n=-6
n+5=1 ==> n=-4
n+5=-3 ==> n=-8
n+5=3 ==> n=-2
==> n = {-6;-4;-8;-2}
vs kết quả này thì n thuộc Z nhé bạn
Ta có:2n+1 chia hết cho n-3
=>2n-6+7 chia hết cho n-3
=>2(n-3)+7 chia hết cho n-3
Mà 2(n-3) chia hết cho n-3
=>7 chia hết cho n-3
=>n-3\(\in\)Ư(7)={-7,-1,1,7}
=>n\(\in\){-4,2,4,10}
Vì n là số tự nhiên nên n\(\in\){2,4,10}
Giải :
2n + 1 ⋮ n - 3 <=> 2.( n - 3 ) + 7 ⋮ n - 3
Vì n - 3 ⋮ n - 3 , để 2.( n - 3 ) + 7 ⋮ n - 2 <=> 7 ⋮ n - 3 => n - 3 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có : n - 3 = 1 => n = 4 ( nhận )
n - 3 = - 1 => n = 2 ( nhận )
n - 3 = 7 => n = 8 ( nhận )
n - 3 = - 7 => n = - 4 ( nhận )
Vậy n ∈ { - 4 ; 2 ; 4 ; 8 }
a)=>2n+3 chia het cho n-2
n-2 chia het cho n-2
=>2n+3 chia het cho n-2
2n-4chia het cho n-2
=>7 chia het cho n-2
=>n-2 thuộc u 7 = 1,7, (-1),(-7)
=>n=3,9,1,(-5)
A)2n+3\(⋮\)n-2
2(n-2\(⋮\)n-2
2n+3-2(n-2)\(⋮\)n-2
2n+3-2n+4\(⋮\)n-2
7\(⋮\)n-2
\(\Rightarrow\)n-2={1;7}
\(\Rightarrow\)n={3;10}
B)3n+7\(⋮\)n+1
3(n+1)\(⋮\)n+1
3n+7-3(n+1)\(⋮\)n+1
3n+7-3n-3\(⋮\)n+1
4\(⋮\)n+1
\(\Rightarrow\)n+1={1;2;4}
\(\Rightarrow\)n={0;1;3}
a, n-7 chia hết cho 2n
=> 2(n-7) chia hết cho 2n
mà 2n chia hết cho 2n nên
2(2n-7)-2n chia hết cho 2n
=> 2n-14 -2n chia hết cho 2n
=> -14 chia hết cho 2n
vậy 2n thuộc ước của 14
=> 2n=1,2,7,14
=>n= 1/2,1,7/2,7
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
3n + 10 chia hết cho n + 2
=> 3n + 6 + 4 chia hết cho n + 2
=> 3(n + 2) + 4 chia hết cho n + 2
Có 3(n + 2) cia hết cho n + 2
=> 4 chia hết cho n + 2
=>n + 2 thuộc Ư(4)
=> n + 2 thuộc {1; -1; 2; -2; 4; -4}
=> n thuộc {-1; -3; 0; -4; 2; -6}
2n - 1 chia hết cho n - 1
=> 2n - 2 + 1 chia hết cho n - 1
=> 2(n - 1) chia hết cho n - 1
Có 2(n - 1) chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1)
=> n - 1 thuộc {1; -1}
=> n thuộc {2; 0}
3n + 10 chia het cho n + 2
vay 3n + 10 = n + n + n + 10
ta co : \(\orbr{\begin{cases}\\\end{cases}}\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+4\orbr{\begin{cases}\\\end{cases}}\) chia het cho (n + 2 )
Ma (n +2) chia het cho (n + 2)
\(\Rightarrow\) 4 chia het cho (n +2)
\(\Rightarrow\)(n + 2) \(\in\)Ư(4)
Ta co : Ư(4)= 1;2;4
Neu n +2=1 thi n = 1-2=-1( BAN CHUA GHI RO n THUOC N HAY Z)
Neu n +2=2 thi n = 2-2=0
Neu n + 2=4 thi n = 4-2=0
2n - 1 chia het cho n-1
Ta co 2n - 1 = n + n -1
Vay n + (n -1) chia het cho n-1
Ma n-1 chia het cho n -1
\(\Rightarrow\) n chia het cho ( n -1)
Ta co n = n - 1 + 1
Vay (n -1) +1 chia het cho n - 1
\(\Rightarrow\)1 chia het cho n -1 ( vi n-1 chia het cho n -1)
\(\Rightarrow\) (n - 1 )\(\in\)Ư(1)
Ta co Ư(1) = 1
TA co n - 1 = 1 thi n= 1 + 1 =2
n = 2