Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x^{n-2}y^7-8x^{n+2}y^8\right)⋮5x^3y^{n+1}\Leftrightarrow\hept{\begin{cases}n-2\ge3\\7\ge n+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=5\\n=6\end{cases}}\)
Nếu n lẻ thì n^3 và n là số lẻ
=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1
=> n^3 + n + 2 là hợp số (1)
Nếu n chẵn thì n^3 và n là số chẵn
=> n^3 + n+2 là hợp số (2)
Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)
n3 - n
= n ( n2 - 1)
= ( n - 1 ) n (n + 1)
Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n
Nhớ ủg hộ mk nha pn
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)=4\)
\(\Leftrightarrow2x.2-3x^2+3=4\)
\(\Leftrightarrow-3x^2-4x-1=0\)
\(\Leftrightarrow-3x^2-3x-x-1=0\)
\(\Leftrightarrow-3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\)
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8
Mà ƯC\(_{\left(3;5;8\right)}\)=1
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:
3.5.8=120(đpcm)