Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 5 ...=> \(a^2+b^2=5\) (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 36 đơn vị => ba-ab=36
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
Gọi \(x\) là chữ số hàng chục \(\left(x\le9,x\in Z^+\right)\)
y là chữ số hàng đơn vị \(\left(y\le9,y\in N\right)\)
Do tổng hai chữ số là 10 nên: \(x+y=10\) (1)
Do khi đổi chỗ hai chữ số cho nhau được số mới lớn hơn số ban đầu 36 đơn vị nên: \(10y+x-10x-y=36\Leftrightarrow-9x+9y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=10\\-9x+9y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x+y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\) (nhận)
Vậy số cần tìm là 37
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
Gọi số đó là ab
Ta có a+b=6
Lại có 10a + b - 10b - a=18
=>a=4, b=2
Vậy số cần tìm là 42
Gọi chữ số hàng chục của số cần tìm là a; chữ số hàng đơn vị của số cần tìm là b (a, b \(\in\) N; 0 < a,b \(\le\) 9)
Số cần tìm là \(\overline{ab}=10a+b\)
Vì tổng bình phương của hai chữ số của nó bằng 89 nên ta có pt:
a2 + b2 = 89 (1)
Số sau khi đổi chỗ hai chữ số của số cần tìm là: \(\overline{ba}=10b+a\)
Vì nếu đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu là 27 đơn vị nên ta có pt:
\(\left(10a+b\right)-\left(10b+a\right)=27\)
\(\Leftrightarrow\) 9a - 9b = 27
\(\Leftrightarrow\) a - b = 3 (2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a^2+b^2=89\\a=3+b\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(3+b\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}9+6b+2b^2=89\\a=3+b\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b\left(3+b\right)=40\\a=3+b\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=8\\b=5\end{matrix}\right.\) (TM)
Vậy số cần tìm là 85
Chúc bn học tốt!
Gọi số cần tìm có dạng là \(ab\)(có dấu gạch ngang trên đầu)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0\le a< 10\end{matrix}\right.\))
Vì tổng bình phương hai chữ số bằng 89 nên ta có phương trình:
\(a^2+b^2=89\)(1)
Vì khi đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu 27 đơn vị nên ta có phương trình:
\(10b+a+27=10a+b\)
\(\Leftrightarrow10b+a-10a-b=-27\)
\(\Leftrightarrow-9a+9b=-27\)
\(\Leftrightarrow-9\left(a-b\right)=-9\cdot3\)
\(\Leftrightarrow a-b=3\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+3\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2+6b+9+b^2=89\\a=3+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b^2+6b-80=0\\a=b+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2+3b-40=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+8b-5b-40=0\\a=b+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b\left(b+8\right)-5\left(b+8\right)=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+8\right)\left(b-5\right)=0\\a=b+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b+8=0\\b-5=0\end{matrix}\right.\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=-8\left(loại\right)\\b=5\left(nhận\right)\end{matrix}\right.\\a=b+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+3\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\left(nhận\right)\\b=5\left(nhận\right)\end{matrix}\right.\)
Vậy: Số cần tìm là 85
Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 50 ...=> a2+b2=5a2+b2=50 (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 54 đơn vị => ba-ab=54
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm
Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))
Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:
\(10a+b=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow10a+b-9a-9b=0\)
\(\Leftrightarrow a-8b=0\)(1)
Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:
\(10b+a+63=10a+b\)
\(\Leftrightarrow10b+a+63-10a-b=0\)
\(\Leftrightarrow-9a+9b=-63\)
\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)
\(\Leftrightarrow a-b=7\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)
Vậy: Số ban đầu là 81
Gọi số cần tìm là \(\overline{ab}\)
Theo bài ta có :
\(\overline{ab}=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow a=8b\)
\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)
Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị
\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)
\(\Leftrightarrow10a+b-10b-a=63\)
\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
Vậy.....
Lời giải:
Gọi số cần tìm là $\overline{ab}$ . Điều kiện:..............
Theo bài ra:
$a+b=6(1)$
$\overline{ab}=\overline{ba}+18$
$10a+b=10b+a+18$
$9a-9b=18$
$a-b=2(2)$
Từ $(1); (2)\Rightarrow a=4; b=2$
Vậy số cần tìm là $42$
Gọi số hàng chục là x; số hàng đơn vị là y (\(0\le x;y\le9;x\ne0\))
Số ban đầu: \(10x+y\)
Sau khi đổi chỗ: \(10y+x\)
Ta có hệ: \(\left\{{}\begin{matrix}x^2+y^2=20\\10y+x-10x-y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=20\\y-x=2\end{matrix}\right.\) \(\Rightarrow x^2+\left(x+2\right)^2=20\Rightarrow x^2+2x-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow y=4\)
Số đó là \(24\)