Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để A là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b, \(\frac{3n-5}{n+4}\in Z\Rightarrow\frac{3n+12-17}{n+4}\in Z\Rightarrow\frac{3\left(n+4\right)-17}{n+4}\in Z\)
\(\Rightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Rightarrow3-\frac{17}{n+4}\in Z\)
Mà \(3\in Z\Rightarrow\frac{17}{n+4}\in Z\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
TH1: n + 4 = -1 => n = -1 - 4 = -5
TH2: n + 4 = 1 => n = 1 - 4 = -3
TH3: n + 4 = -17 => n = -17 - 4 = -21
TH4: n + 4 = 17 => n = 17 - 4 = 13
Mặt khác \(n\inℕ^∗\Rightarrow n=13\) mới có thể thỏa mãn.
\(n+2⋮n-3\)
\(n-3+5⋮n-3\)
\(5⋮n-3\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Ta có: \(n+2=n-3+5\)
Để \(n+2⋮n-3\)\(\Rightarrow\)\(n-3+5⋮n-3\)mà \(n-3⋮n-3\)
\(\Rightarrow\)\(5⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)\(n\in\left\{2;4;-2;8\right\}\)( các giá trị trên đều thoả mãn )
Vậy...........
a) n phải thuộc Z
b)A=\(\frac{13}{0-1}\)=\(\frac{13}{-1}\)=(-13) khi n=0
A=\(\frac{13}{5-1}\)=\(\frac{13}{4}\) khi n=5
A=\(\frac{13}{7-1}\)=\(\frac{13}{6}\) khi n=7
c)để a là số nguyên thì n-1=13k(k thuộc Z)
=>n=13k+1(k thuộc Z)
Đặt \(\frac{n^2}{180-n}\)= P ( P nguyên tố )
=> n2 = P . (180 - n ) => n2 chia hết cho P => n chia hết cho P
=> n = K . P( K thuộc N sao ) thay vào trên ta có :
(K . P)2 = P . ( 180 - K . P )
K2 .P2 = 180 .P - K.P2
K2.P2 +KP2 = 180 .P
K(K + 1) = 180 = 22 . 32 . 5
Do P là số nguyên tố nên P thuộc { 2,3,5}
+> Nếu P = 2 ta có : K .( K+1) =2. 32 . 5 = 90=> K = 90
Khi đó n = 9 .2 =18
+> Nếu P = 3 ta có : K ( K + 1 ) = 22 . 3. 5 = 60 => K thuộc tập hợp rỗng
+> Nếu P = 5 ta có : K ( K +1 ) =22.32 = 36 => K thuộc tập hợp rỗng
Vậy n = 18
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.