Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc n)
Khi đó, số cần tìm có dạng: 10a+b
Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b
Mà số mới này hơn số đã cho 682 đơn vị
=>101a+10b-10a-b=682
<=>91a+9b=682 (1)
Theo đề ta có: a-b=2 <=>b=a-2(2)
Thay (2) vào (1) ta được:
91a+9 (a-2)=682
<=>100a=700
<=>a=7(thỏa điều kiện)
=> b=a-2=7-2=5 (thỏa điều kiện)
Vậy,số đã cho là 75
Gọi số cần tìm là ab .Theo đề bài ta có b= a-2
aba - ab = 682
101a+10b-10a-b=682
91a+9b=682
91a+9(a-2)=682
100a=682+18
100a=700
a=7 => b=5
Vậy số cần tìm là 75
Gọi x là chữ số hàng chục \(\left(x\in N,0< x\le9\right)\)
Gọi y là chữ số hàng đơn vị \(\left(y\in N,0\le y\le9\right)\)
Số ban đầu là: \(\overline{xy}=10x+y\)
Số lúc sau: \(\overline{xyx}=100x+10y+x=101x+10y\)
Do chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 nên: x - y = 2
Do số mới lớn hơn số ban đầu 682 nên: \(101x+10y-10x-y=682\)
\(\Leftrightarrow91x+9y=682\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=2\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}91x-91y=182\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-100y=-500\\x-y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy số cần tìm là 75
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài