K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

\(A=\left(4x^2-4xy+y^2\right)-\left(8x-4y\right)+4+\left(x^2+4x+4\right)-1\)

\(\Rightarrow A=\left(2x-y\right)^2-4\left(2x-y\right)+4+\left(x+2\right)^2-1\)

\(\Rightarrow A=\left(2x-y-2\right)^2+\left(x+2\right)^2-1\)

Nhận xét với mọi x,y thì :\(\left(2x-y-2\right)^2\ge0;\left(x+2\right)^2\ge0\)

\(\Rightarrow A\ge-1\)Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y-2=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-6\end{cases}}\)

Vậy GTNN của A=-1 khi x=-2  ; y=-6

23 tháng 5 2017

\(A=3x^2+5x-2\)

\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)

\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)

         Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)

                  Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)

      Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)

23 tháng 5 2017

mk làm ý a thôi, mấy ý sau dựa vào mà làm.

      A = \(3x^2+5x-2\)

 => \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)

\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Đẳng thức xảy ra <=> x = - 5/6.

Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

12 tháng 8 2016

ko cho kết quả = bao nhiêu sao giải được

12 tháng 8 2016

làm sao mà giải dc bạn ơi!!!

19 tháng 9 2017

nl các bạn học giỏi ơi

19 tháng 9 2017


Tổng quát có vp_two.Nhưng có lẽ bài 2 vp làm sai thì phải. gợi ý thôi. 
a, phân tích đa thức thành tổng của bình phương. Vì các bình phương luôn lớn hơn hoặc bằng 0 nên GTNN = phần dư. 
ở bài này GTNN=10 
b,tương tự câu trên luôn, nhưng có vẻ bài này khó hơn nhiều đấy. 
Mẹo nè: bạn đưa các phần tử có x về trước hết rùi đưa về bình phương của 3 số, thêm bớt đc phần còn lại nhét vào 1 bình phương nữa=>còn dư đấy chính là GTNN đó. 
Bài này chắc là hơi khó đối với bạn nên minh làm sơ sơ cho bạn nghen 
x^2-4xy+5y^2+10x-22y+28 
x² - 4xy +10x +4y² + 25-20y +y²-2y +3 
(x-2y+5)²+(y-1)²+2≥2 

VẬy GTNN =2 <=>x=-3;y=1

26 tháng 8 2018

a. Ta có: x2+y2-2x+4y+5=0

⇌(x-1)2+(y-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b. Ta có: 4x2+y2-4x-6y+10=0

⇌ (2x-1)2+(y-3)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)

c.Ta có: 5x2-4xy+y2-4x+4=0

⇌(2x-y)2+(x-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)

d.Ta có: 2x2-4xy+4y2-10x+25=0

⇌ (x-2y)2+(x-5)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)

17 tháng 6 2016

Ta có: A = 5x+ 2y+ 4xy - 2x + 4y + 2005

             = (4x2+ 4xy+y) + ( x- 2x + 1) + (y+ 4y + 2) + 2002

             = (2x+y)2 + (x-1)+ (y+2)2 +2002

Ta có: (2x+y)2>=0 V x,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y

          (x-1)2 >=0 Vx. Dấu "=" XR khi x=1

          ((y+2)>=0 V y. Dấu "=" XR khi y=-2

Vậy A>=2002 V x,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)

Do đó Min A=2002 tại (x,y)=(1,2)

17 tháng 6 2016

Kẻ Vô Danh: Em kết luận giá trị y sai nhé.

GTNN của A  là 2002 khi  x = 1, y = - 2.