Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả min lẫn max số đều rất lẻ
Max=2015.00012406947
Min=-1.240694712688667 times 10^{-4}
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
mình giải cách này ko bt đúng hay sai nha :))
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2015\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|\ge2\)
đẳng thức xảy ra khi \(2015\le x\le2017\)
Bạn kia sai cmnr nhé:
\(linh=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(linh=\left|x-2015\right|+\left|x-2017\right|+\left|x-2016\right|\)
\(linh=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Nên \(linh\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(linh\ge2+\left|x-2016\right|\) Vì \(\left|x-2016\right|\ge0\) nên
\(linh\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2015\ge0\\x-2016=0\\x-2017\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2015\\x=2016\\x\le2017\end{matrix}\right.\)
Nên \(x=2016\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2015-x\ge0\\2016+x\ge0\end{cases}\Leftrightarrow}-2016\le x\le2015\)
Vậy Min = 4031 <=> \(-2016\le x\le2015\)