Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(2x+\sqrt{5-x^2}\le\sqrt{\left(2^2+1\right)\left(x^2+5-x^2\right)}=5\)
Ta lại có \(5-x^2\ge0\)
<=> \(-\sqrt{5}\le x\le\sqrt{5}\)
=> A\(\ge-2\sqrt{5}\)
Vậy A cực đại là 5 khi x = 2. Cực tiểu là \(-2\sqrt{5}\)khi x = \(-\sqrt{5}\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)
Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)
\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)
Vậy ......................
Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x
ĐKXĐ: \(-\sqrt{5}\le x\le\sqrt{5}\)
\(\left\{{}\begin{matrix}2x\ge-2\sqrt{5}\\\sqrt{5-x^2}\ge0\end{matrix}\right.\Rightarrow A\ge-2\sqrt{5}\)
\(A_{min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)
\(A^2=\left(2x+1.\sqrt{5-x^2}\right)^2\overset{Bunyakovsky}{\le}\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\\ \Leftrightarrow-5\le A\le5\\ A_{max}=5\Leftrightarrow x=2\)
Đk: \(-\sqrt{5}\le x\le\sqrt{5}\)
Ta có: \(\sqrt{5-x^2}\ge0\Leftrightarrow2x+\sqrt{5-x^2}\ge2x\)
=> A đạt gtln khi 2x đạt gtln, đạt gtnn khi 2x đạt gtnn
Vậy A đạt gtln bằng 2 căn 5 <=> x= căn 5
A đạt gtnn bằng -2 căn 5 <=> x= -căn 5
(biện luận thế này chắc ko đc trọn điểm đâu nhưng tớ chỉ biết làm thế)
ĐKXĐ: \(-\sqrt{5}\le x\le\sqrt{5}\). Suy ra:
\(-2\sqrt{5}\le2x\le2\sqrt{5}\)
mà \(0\le\sqrt{5-x^2}\ge\sqrt{5}\)
Suy ra: \(-2\sqrt{5}\le2x+\sqrt{5-x^2}\ge3\sqrt{5}\)
Vậy min của A là \(-2\sqrt{5}\)khi x = \(-\sqrt{5}\)