Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y+y/x=x^2+y^2/xy sử dụng bdt cosi =>x^2+y^2/xy+xy/x^2+y^2>=1
ta có: \(M=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{xy}\cdot\frac{xy}{x^2+y^2}}=2\cdot\sqrt{1}=2\cdot1=2.\)
(Ở đây mình áp dụng BĐT Cauchy: \(a+b\ge2\sqrt{ab}\)nhé!)
Học tốt! ^3^
Áp dụng BĐT AM-GM ta có:
\(xy\le\left(\dfrac{x+y}{2}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(S=\dfrac{1}{x^2+y^2}+\dfrac{5}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{9}{2xy}\)
\(\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}+\dfrac{9}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{9}{2\cdot\dfrac{1}{4}}=22\)
Xảy ra khi \(x=y=\dfrac{1}{2}\)