Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\) (2)
Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )
\(\Leftrightarrow x^2-2xy+y^2>=0\)
\(\Leftrightarrow x^2+y^2>=2xy\)
\(\Leftrightarrow x^2+y^2+2xy>=4xy\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow1>=4xy\)
\(\Leftrightarrow2xy< =\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2xy}>=2\) (3)
Từ (1) , (2) và (3) , suy ra : \(K>=4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)
\(\Rightarrow x=y=\frac{1}{2}\)
Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)
\(\dfrac{2}{xy}=\dfrac{4}{2xy}=\dfrac{1}{2xy}+\dfrac{3}{2xy}\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2-2xy+4xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
Hay \(1\ge2xy.2\)
\(\Rightarrow2xy\le\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{1}{2}}=2\)
\(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{4}{2xy}+\dfrac{3}{x^2+y^2}=\dfrac{1}{2xy}+\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}\)
\(\ge2+3.\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)\)
Áp dụng bất đẳng thức Cosy
\(\ge2+3.\left(\dfrac{4}{2xy+x^2+y^2}\right)\)= 2 + 12 = 14
Vậy Min M =14 khi \(x=y=\dfrac{1}{2}\)
K=1/(x^2+y^2)+1/2xy+1/2xy
áp dụng BĐT cauchy schwarz ta có
1/(x^2+y^2)+1/2xy>=(1+1)^2/(x+y)^2=4 (1)
2xy<=(x+y)^2/2=1/2
=>1/2xy>=2 (2)
từ (1) và (2) => Min K=6 khi x=y=1/2
2/xy<=1/x^2+1/y^2=1/2
=>xy>=4
Dấu = xảy ra khi x=y=2
(x+y)^2>=4xy>=16
=>x+y>=4
Dấu = xảy ra khi x=y=2
=>x+y+xy+2023>=2023+4+4=2031
Dấu = xảy ra khi x=y=2
\(\dfrac{x^2+y^2}{xy}=t;x,y>0\Rightarrow t\ge2\) khi x=y
\(A=t+\dfrac{1}{t}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(A-\dfrac{5}{2}=\left(t-2\right)+\left(\dfrac{1}{t}-\dfrac{1}{2}\right)=\left(t-2\right)-\dfrac{\left(t-2\right)}{2t}=\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\)
\(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\\2t>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\ge0\) đẳng thức khi t=2
\(\Rightarrow A-\dfrac{5}{2}\ge0\Rightarrow A\ge\dfrac{5}{2}\)
Vậy GTNN (A) =5/2 khi x=y
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$
$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$
$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$
$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$
Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$
Áp dụng BĐT AM-GM ta có:
\(xy\le\left(\dfrac{x+y}{2}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(S=\dfrac{1}{x^2+y^2}+\dfrac{5}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{9}{2xy}\)
\(\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}+\dfrac{9}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{9}{2\cdot\dfrac{1}{4}}=22\)
Xảy ra khi \(x=y=\dfrac{1}{2}\)