Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\)
Ta có:
\(\left(x+3y\right)^2\ge0;\left|x+5\right|\ge0\)
\(\Leftrightarrow\left(x+3y\right)^2+5\left|x+5\right|+14\ge14\)
\(\Leftrightarrow\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\le\frac{21}{14}=\frac{3}{2}\)
\(\Leftrightarrow A\le\frac{2}{3}+\frac{3}{2}=\frac{13}{6}\)
Dấu '' = '' xảy ra khi:
\(x+5=0\Leftrightarrow x=-5\)
\(x+3y=0\Leftrightarrow y=\frac{-x}{3}=\frac{5}{3}\)
Vậy \(MaxA=\frac{13}{6}\Leftrightarrow x=-5;y=\frac{5}{3}\)
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
a) \(A=\dfrac{7}{3}\left(x^2+1\right)\)
Ta có:
\(x^2\ge0\forall x\\ \Rightarrow x^2+1\ge1\forall x\)
Để \(A=\dfrac{7}{3}\left(x^2+1\right)\) đạt GTNN thì \(x^2+1\) đạt GTNN
\(hay:x^2+1=1\)
Thay \(x^2+1=1\) vào \(A=\dfrac{7}{3}\left(x^2+1\right)\) ta có:
\(A=\dfrac{7}{3}.1\\ A=\dfrac{7}{3}\)
Vậy \(Max_A=\dfrac{7}{3}\) tại \(x=0\)
pạn ơi