Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2(x^2+1/2x)
=2(x^2+2*x*1/4+1/16-1/16)
=2(x+1/4)^2-1/8>=-1/8
Dấu = xảy ra khi x=-1/4
B=-(x^2-2x+1-1)
=-(x-1)^2+1<=1
Dấu = xảy ra khi x=1
Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)
\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)
\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)
\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)
\(\Leftrightarrow2012,3\le A\le2013,5\)
A = (4x + 3)/(x² + 1)
CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1)
Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn :
(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d²
<=> a²d² - 2.ad.bc + b²c² ≥ 0
<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM
- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d
- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²)
<=> (4x + 3)² ≤ 25(x² + 1)
<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1)
<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1)
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)