Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
a: ĐKXĐ: x<>-3
b: \(Q=\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\dfrac{1}{x+3}\right)\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{2x^2-2}{x^2-1}\cdot\dfrac{1}{x^2-3x+9}=\dfrac{2}{x^2-3x+9}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)
\(D=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-3\left(x-1\right)}{\left(x-1\right)^2}\)
Đặt: x-1=y=>x=y+1. Ta có:
\(D=\frac{\left(y+1\right)^2-3y}{y^2}=\frac{y^2-y+1}{y^2}=1-\frac{1}{y}+\frac{1}{y^2}\)
Đặt: \(\frac{1}{y}=t\Rightarrow D=1-t+t^2\ge\frac{3}{4}\\ D=\frac{3}{4}\Leftrightarrow\left(t-\frac{1}{2}\right)^2=0\Rightarrow t=\frac{1}{2}\)
\(t=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{1}{2}\Rightarrow y=2\Leftrightarrow x-1=2\Rightarrow x=3\)
Vậy minD=\(\frac{3}{4}\Leftrightarrow x=3\)
D=\(\frac{x.x-3x+3}{x.x-2x+1}\)
D=\(\frac{x.\left(x-3\right)+3}{x.\left(x-2\right)+1}\)
D=\(\frac{x-3+3}{x-2+2}\)(Chia cả tử và mẫu cho x lần)
D=\(\frac{x}{x}\)
D=1