">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

A= (x2 + 9y2 +4 - 6xy - 12y +4x ) + (x2 -10x + 25 )+ 1985                                                                                                                                             = (3y - 2 - x)2 + (x - 5)2 + 1985 >= 1985                                                                                                                                       Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-5=0\\3y-2-x=0\end{cases}}\)                                                                                                                                                                      Giải hệ phương trình ta được \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

dấu bằng xảy ra khi cậu đồng ý làm ny tớ vì lúc đó nhịp tim ta bằng nhau(đều loạn)

14 tháng 8 2015

=-12y

**** cho mình nha Thần Thánh

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Ta có:

\(M=2x^2+x(6y+6)+(9y^2-12y+2018)\)

\(\Leftrightarrow 2x^2-2x(3y+3)+(9y^2-12y+2018-M)=0\)

Coi đây là PT bậc 2 ẩn $x$. Ta có:

\(\Delta'=(3y+3)^2-2(9y^2-12y+2018-M)\geq 0\)

\(\Leftrightarrow -9y^2+42y-4027+2M\geq 0\)

\(\Leftrightarrow 2M\geq 9y^2-42y+4027\)

Mà \(9y^2-42y+4027=(3y-7)^2+3978\geq 3978\)

\(\Rightarrow 2M\geq 3978\Leftrightarrow M\geq 1989\)

Vậy \(M_{\min}=1989\)

Dấu bằng xảy ra khi \(x=5; y=\frac{7}{3}\)

NV
20 tháng 3 2019

\(A=x^2+\left(3y\right)^2+4-6xy-12y+4x+x^2-10x+25+1985\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1985\ge1985\)

\(\Rightarrow A_{min}=1985\) khi \(\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

NV
21 tháng 3 2019

\(A=x^2+\left(3y\right)^2+2^2-6xy+4x-12y+x^2-10x+25+1985\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1985\ge1985\)

\(\Rightarrow A_{min}=1985\) khi \(\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

21 tháng 3 2019

A = \(2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+100+1885\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1885\ge1885\)

Vậy GTNN của A = 1885 khi

\(\left\{{}\begin{matrix}x-3y+2=0\\x-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\x-3y+2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

4 tháng 8 2016

để mai nhé @

5 tháng 8 2016

a. Min A= 2014 khi x= 0, y= 0

DD
25 tháng 5 2021

\(2x^2+9y^2-6xy-6x-12y+2004\)

\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)

\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)

Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).