K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

\(5x^2+9y^2-12xy+24x-48y+2080=4x^2-2.2x.3y+9y^2+16\left(2x-3y\right)+64+x^2-8x+16+2000=\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x-4\right)^2+2000=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\)

Ta có \(\left(2x-3y+8\right)^2\ge0\)

\(\left(x-4\right)^2\ge0\)

Nên \(\left(2x-3y+8\right)^2+\left(x-4\right)^2\ge0\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\ge2000\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x-3y+8=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)

Vậy Min của \(5x^2+9y^2-12xy+24x-48y+2080\) là 2000 và xảy ra khi x=4 và y=\(\dfrac{16}{3}\)

1 tháng 12 2017

\(S=4x^2-12xy+9y^2+32x-48y+64+x^2-8x+16+2000\)

\(S=\left(2x-3y\right)^2+16\left(2x-3y\right)+64+\left(x^2+8x+16\right)+2000\)

\(S=\left(2x-3y+8\right)^{^2}+\left(x-4\right)^2+2000\ge2000\)

MinS = 2000 khi x = 4 và y = 16/3

1 tháng 12 2017

con số không đúng với đề bài bạn nha

23 tháng 12 2016

3y=z

\(S=5x^2+z^2-4xz-24x+16z+2080\)

\(S=\left(x-2z+8\right)^2+4x^2-40x+2080-8^2\)

\(S=\left(x-2z+8\right)^2+4\left(x-5\right)^2+2080-8^2-4.5^2\)

Smin =\(2080-8^2-4.5^2\)

24 tháng 12 2016

đề thi học kỳ của mình cũng có câu này

20 tháng 10 2015

\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)

Vậy MINP=2 <=> x=4;y=16/3

 

 

9 tháng 10 2018

tiếp đi =))

9 tháng 10 2018

P = 5x2+9y2-12xy+24x-48y+82=(2x - 3y + 8)² + x² - 8x + 16 + 2 = (2x - 3y + 8)² + (x - 4)² + 2

=> min P = 2
dấu = xảy ra <=> 2x - 3y + 8 = 0 và x = 4 => y = \(\dfrac{16}{3}\)

vậy min P = 2
dấu = xảy ra <=> x = 4, y = \(\dfrac{16}{3}\)

22 tháng 10 2019

6x2+19y2+24x-2y+12xy-725=0

\(\Leftrightarrow6x^2+\left(12y+24\right)x-2y+19y^2-725=0\)

\(\Leftrightarrow\Delta=\left(12y+24\right)^2-4.6.\left(-2y+19y^2-725\right)\)

\(\Leftrightarrow144y^2+576y+576+48y-456y^2+17400\)

bữa sau sẽ trả lời tiếp

18 tháng 3 2020

Với \(x,y\in Z\)

\(6x^2+19y^2+24x-2y+12xy-725=0\)

\(\Leftrightarrow6x^2+\left(12xy+24x\right)+19y^2-2y-725=0\)

\(\Leftrightarrow6x^2+\left(12y+24\right)x+19y^2-2y-725=0\)

\(\Leftrightarrow6x^2+2\left(6y+12\right)x+19y^2-2y-725=0\) \(\left(a=6,b'=6y+12,c=19y^2-2y-725\right)\)

\(\Delta'=\left(6y+12\right)^2-6\left(19y^2-2y-725\right)=36y^2+144y+144-114y^2+12y+4350\)

\(\Delta'=-78y^2+156y+4494=-78\left(y^2-2y+1\right)+78+4494=-78\left(y-1\right)^2+4572\)

PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-78\left(y-1\right)^2+4572\ge0\Leftrightarrow-78\left(y-1\right)^2\ge-4572\)

\(\Leftrightarrow\left(y-1\right)^2\le\frac{762}{13}\)

\(\Leftrightarrow-\frac{\sqrt{9906}}{13}\le y-1\le\frac{\sqrt{9906}}{13}\), mà \(y\in Z\) \(\Rightarrow-7\le y-1\le7\left(1\right)\)

Với PT có nghiệm, ta có: \(x=\frac{-b'\pm\sqrt{\Delta'}}{a}\)

\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{-\left(12y+24\right)}{6}=-2y-4\\x_1x_2=\frac{c}{a}=\frac{19y^2-2y-725}{6}=\frac{y^2-2y+1+18y^2-726}{6}=3y^2-121+\frac{\left(y-1\right)^2}{6}\end{cases}}\)

Để \(x\in Z\), thì \(\hept{\begin{cases}x_1+x_2\in Z\\x_1x_2\in Z\end{cases}}\Leftrightarrow\hept{\begin{cases}-2y-4\in Z\\3y^2-121+\frac{\left(y-1\right)^2}{6}\in Z\end{cases}\Leftrightarrow}\frac{\left(y-1\right)^2}{6}\in Z\) (vì \(y\in Z\))

Và \(\Delta'\) là số chính phương.

\(\frac{\left(y-1\right)^2}{6}\in Z\Leftrightarrow\left(y-1\right)^2⋮6\Leftrightarrow y-1⋮6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow y-1\in\left\{-6;0;6\right\}\Leftrightarrow y\in\left\{-5;1;7\right\}\)

\(\Delta'\) là số chính phương \(\Leftrightarrow-78\left(y-1\right)^2+4572\) là số chính phương

- Thử \(y=-5\), thì \(\Delta'=-78\left(-5-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)

- Thử \(y=1\), thì \(\Delta'=-78\left(1-1\right)^2+4572=4572\) (4572 không phải là số chính phương)

- Thử \(y=7\), thì \(\Delta'=-78\left(7-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)

Từ đó, với \(y\in\left\{-5;7\right\}\) thì \(\Delta'=1764\) là số chính phương. \(\Rightarrow\sqrt{\Delta'}=42\)

PT có nghiệm thì:

\(x=\frac{-b'\pm\sqrt{\Delta'}}{a}=\frac{-6y-12\pm42}{6}=-y-2\pm7\)

- Với \(y=-5\), thì \(x=5-2\pm7\Leftrightarrow x\in\left\{-4;10\right\}\) (tmđk)

- Với \(y=7\), thì \(x=-7-2\pm7\Leftrightarrow x\in\left\{-16;-2\right\}\) (tmđk)

Vậy phương trình có các nghiệm nguyên \(\left(x;y\right)=\left(-4;-5\right),\left(10;-5\right),\left(-16;7\right),\left(-2;7\right)\).

12 tháng 6 2015

A = (x2 - 6xy + 9y2) + 2.(x - 3y).2  + 4 + x2 - 10x + 25 + 1993

A = [(x - 3y)2 + 2.(x - 3y).2 + 22 ] + (x - 5)2 + 1993

A = (x - 3y + 2)2 + (x - 5)2 + 1993 \(\ge\) 0 + 0 + 1993

=> Min A = 1993 khi x - 3y + 2 = 0 và x - 5 = 0

=> x = 5 và y = 7/3