Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)
\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)
\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)
\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)
Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha
Ta có:
\(A=1993-x^2-3y^2+2xy-10x+14y\\ =2020-\left(x^2-2xy+y^2\right)-10\left(x-y\right)-25-\left(2y^2-4y+2\right)\\ =2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\)
Với mọi x; y thì \(2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\ge2020\)
Để A=2020 thì
\(\left\{{}\begin{matrix}x-y=5\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vậy...
\(C=1983-x^2-3y^2+2xy-10x+14y\)
\(C=-\left(x^2+3y^2-2xy+10x-14y-1983\right)\)
\(C=-\left(x^2-2xy+y^2+2y^2+10x-14y-1983\right)\)
\(C=-\left[\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot5+25+2y^2-4y+2-2010\right]\)
\(C=-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2-2010\right]\)
\(C=2010-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2\right]\le2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
gợi ý nhé:
[-(x-y)2-10(x-y)-25] - 2(y-1)2 + 2010
= -[(x-y)+5]2 - 2(y-1)2 + 2010
tự cậu suy ra MAX nhé
chưa hiểu thì hỏi nhé
\(E=1983-x^2-3y^2+2xy-10x+14y\)
\(-E=x^2+3y^2-2xy+10x-14y-1983\)
\(-E=\left(x^2-2xy+y^2\right)+2y^2+10x-14y-1983\)
\(-E=\left[\left(x-y\right)^2+2\left(x-y\right).5+25\right]\)\(+2\left(y^2-2y+1\right)+1956\)
\(-E=\left(x-y+5\right)^2+2\left(y-1\right)^2+1956\)
Do \(\left(x-y+5\right)^2\ge0\forall x;y\)
\(2\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow-E\ge1956\Leftrightarrow E\le-1956\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)
Vậy ...
Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)
$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$
$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$
$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$
$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$
$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$
$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$
-2A=2x2+6y2+4xy-20x-28y+36
=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162
=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162
=> A\(\le81\)
Dấu "=" xảy ra khi