Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
Ta có BĐT sau: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng, ta được: \(\left(\sqrt{x^2+1}+\sqrt{2x}\right)^2\le2\left(x^2+1+2x\right)=2\left(x+1\right)^2\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)(1)
Tương tự, ta có: \(\sqrt{y^2+1}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)(2); \(\sqrt{z^2+1}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)(3)
Theo BĐT Cauchy-Schwarz, ta được: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le\left(1+1+1\right)\left(x+y+z\right)\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\)
\(\Rightarrow\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)(Nhân 2 vế của bất đẳng thức với \(2-\sqrt{2}>0\)) (4)
Cộng theo vế của 4 BĐT (1), (2), (3), (4), ta được:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)(Do theo giả thiết thì \(x+y+z\le3\))
hay \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le6+3\sqrt{2}\)
Đẳng thức xảy ra khi x = y = z = 1
Vậy giá trị lớn nhất của biểu thức là \(6+3\sqrt{2}\), đạt được khi x = y = z = 1
\(Đk:x\ge2\)
Đặt \(A=\sqrt{x-2}+2\sqrt{x+1}+2019-x\)
\(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\)
\(=\left[\left(-x+2\right)+2\sqrt{x-2}-1\right]+\left[\left(-x-1\right)+4\sqrt{x+1}-4\right]+4042\)
\(=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+4\right]+4042\)
\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Rightarrow A\le2021\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{x+1}-2=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy \(Max\) của biểu thức trên là 2021, đạt tại x=3.