Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{u}{v}=\frac{v}{t}\Rightarrow\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u}{v}.\frac{v}{t}=\frac{u}{t}\) (1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u^2+v^2}{v^2+t^2}\) (2)
Từ (1) và (2) => \(\frac{u^2+v^2}{v^2+t^2}=\frac{u}{t}\left(đpcm\right)\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)
\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)
\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)
\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất tỉ số bằng nhau, ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
bạn vào link này xem nhé
http://olm.vn/hoi-dap/question/97037.html
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d.\left(2k+13\right)}{d.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) khi: \(\frac{a}{b}=\frac{c}{d}\)
\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\)
(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)
(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)
Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để B lớn nhất thì \(\frac{12}{x^2+3}\) lớn nhất hay x2 + 3 nhỏ nhất
Có: x2 + 3 \(\ge3\)
Dấu "=" xảy ra khi và chỉ khi x2 = 0 => x = 0
Khi x = 0, \(B=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)
Vậy \(B_{Max}=5\) khi và chỉ khi x = 0
mk thanks bn nhìu nha