Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do \(\left(2x+\frac{1}{3}\right)^4\ge0\) => \(A\ge-1\)
Dấu "=" xảy ra khi \(2x+\frac{1}{3}=0=>2x=-\frac{1}{3}=>x=-\frac{1}{6}\)
Vậy Min A = -1 khi x = \(\frac{-1}{6}\)
b)Do \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0=>B\le3\)
Dấu "=" xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0=>\frac{4}{9}x=\frac{2}{15}=>x=\frac{3}{10}\)
Vậy Max B = 3 khi x = \(\frac{3}{10}\)
B = 3 | 2x + 4 | - 15
Vì | 2x + 4 | \(\ge0\forall x\)
=> 3 | 2x + 4 | \(\ge0\forall x\)
=> 3 | 2x + 4 | - 15 \(\ge-15\forall x\)
=> B \(\ge-15\forall x\)
=> B = - 15 <=> | 2x + 4 | = 0
<=> 2x + 4 = 0
<=> 2x = - 4
<=> x = - 2
Vậy B min = - 15 khi x = - 2
A = - | x - 6 | + 24
Vì | x - 6 | \(\ge0\forall x\)
=> - | x - 6 | \(\le0\forall x\)
=> - | x - 6 | + 24 \(\le24\forall x\)
=> A \(\le24\forall x\)
=> A = 24 <=> | x - 6 | = 0
<=> x - 6 = 0
<=> x = 6
Vậy A max = 24 khi x = 6
Ta có \(\text{3|2x+4|}\ge0\Rightarrow\text{3|2x+4|}-15\ge15\)
Dấu "=" xảy ra khi \(\text{3|2x+4|=0\Rightarrow2}x+4=0\Rightarrow2x=-4\Rightarrow x=-2\)
A = 3 x | 1 - 2x | - 5
Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0
A = 3 x | 1 - 2x | - 5 \(\ge\)- 5
Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)
1 bài thôi . còn lại tương tự
bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé
a; \(A=2x+6x^2-3-9x\)
\(=6x^2-7x-3\)
\(=6\left(x^2-\dfrac{7}{6}x-\dfrac{1}{2}\right)\)
\(=6\cdot\left(x^2-2\cdot x\cdot\dfrac{7}{3}+\dfrac{49}{6}-\dfrac{26}{3}\right)\)
\(=6\left(x-\dfrac{7}{3}\right)^2-52\ge-52\forall x\)
Dấu '=' xảy ra khi x=7/3
b: \(B=3+12x-2x-8x^2\)
\(=-8x^2+10x+3\)
\(=-8\left(x^2-\dfrac{5}{4}x-\dfrac{3}{8}\right)\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{53}{8}\right)\)
\(=-8\left(x-\dfrac{5}{2}\right)^2+53\le53\forall x\)
Dấu '=' xảy ra khi x=5/2
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
: a) A= (2x - 1)(x - 3)
A=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}.7}{2\sqrt{2}}x+\frac{49}{8}\right)-\frac{49}{8}+3\)
=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)
dấu = xảy ra khi \(x=\frac{7}{4}\)
=> Min A=\(-\frac{25}{8}\)khi x=\(\frac{7}{4}\)
b) B= (1 - 2x)(x - 3)
=\(-2x^2+6x+x-3\)
=\(-\left(2x^2-7x+\frac{49}{8}\right)-3-\frac{49}{8}\)
=\(-\frac{73}{8}-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)<= \(-\frac{73}{8}\)
dấu = xảy ra khi x=\(\frac{7}{4}\)
=> MaxB=-73/8 khi x=7/4
Cảm ơn nha