K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

                       : a) A= (2x - 1)(x - 3)

A=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}.7}{2\sqrt{2}}x+\frac{49}{8}\right)-\frac{49}{8}+3\)

=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)

dấu = xảy ra khi \(x=\frac{7}{4}\)

=> Min A=\(-\frac{25}{8}\)khi x=\(\frac{7}{4}\)

                        b) B= (1 - 2x)(x - 3)

=\(-2x^2+6x+x-3\)

=\(-\left(2x^2-7x+\frac{49}{8}\right)-3-\frac{49}{8}\)

=\(-\frac{73}{8}-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)<= \(-\frac{73}{8}\)

dấu = xảy ra khi x=\(\frac{7}{4}\)

=> MaxB=-73/8 khi x=7/4

13 tháng 8 2016

Cảm ơn nha

 

9 tháng 6 2015

a)Do \(\left(2x+\frac{1}{3}\right)^4\ge0\) => \(A\ge-1\)

Dấu "=" xảy ra khi \(2x+\frac{1}{3}=0=>2x=-\frac{1}{3}=>x=-\frac{1}{6}\)

Vậy Min A = -1 khi x = \(\frac{-1}{6}\)

b)Do \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0=>B\le3\)

Dấu "=" xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0=>\frac{4}{9}x=\frac{2}{15}=>x=\frac{3}{10}\)

Vậy Max B = 3 khi x = \(\frac{3}{10}\)

27 tháng 7 2017

B = 3 | 2x + 4 | - 15

Vì | 2x + 4 | \(\ge0\forall x\)

=> 3 | 2x + 4 | \(\ge0\forall x\)

=> 3 | 2x + 4 | - 15 \(\ge-15\forall x\)

=> B \(\ge-15\forall x\)

=> B = - 15 <=> | 2x + 4 | = 0

                  <=> 2x + 4 = 0

                  <=> 2x = - 4

                  <=> x = - 2

Vậy B min = - 15 khi x = - 2

A = - | x - 6 | + 24

Vì | x - 6 | \(\ge0\forall x\)

=> - | x - 6 |  \(\le0\forall x\)

=> - | x - 6 | + 24 \(\le24\forall x\)

=> A \(\le24\forall x\)

=> A = 24 <=> | x - 6 | = 0

                <=> x - 6 = 0 

                <=> x = 6

Vậy A max = 24 khi x = 6

27 tháng 7 2017

Ta có \(\text{3|2x+4|}\ge0\Rightarrow\text{3|2x+4|}-15\ge15\)

Dấu "=" xảy ra khi \(\text{3|2x+4|=0\Rightarrow2}x+4=0\Rightarrow2x=-4\Rightarrow x=-2\)

22 tháng 5 2019

A = 3 x | 1 - 2x | - 5

Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0

A = 3 x | 1 - 2x | - 5 \(\ge\)- 5

Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)

1 bài thôi . còn lại tương tự

bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé

22 tháng 5 2019

Vậy còn tìm max ạ???

a; \(A=2x+6x^2-3-9x\)

\(=6x^2-7x-3\)

\(=6\left(x^2-\dfrac{7}{6}x-\dfrac{1}{2}\right)\)

\(=6\cdot\left(x^2-2\cdot x\cdot\dfrac{7}{3}+\dfrac{49}{6}-\dfrac{26}{3}\right)\)

\(=6\left(x-\dfrac{7}{3}\right)^2-52\ge-52\forall x\)

Dấu '=' xảy ra khi x=7/3

b: \(B=3+12x-2x-8x^2\)

\(=-8x^2+10x+3\)

\(=-8\left(x^2-\dfrac{5}{4}x-\dfrac{3}{8}\right)\)

\(=-8\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{53}{8}\right)\)

\(=-8\left(x-\dfrac{5}{2}\right)^2+53\le53\forall x\)

Dấu '=' xảy ra khi x=5/2

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1