K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

@Ace Legona @ngonhuminh @Nguyễn Huy Tú @Đỗ Hương Giang @Tojimomi Katori Giúp mình với các bạn ơi khocroikhocroikhocroi

áp dụng công thức này vào làm:

\(\dfrac{n}{a\left(a-n\right)}=\dfrac{1}{a-n}-\dfrac{1}{a}\)

21 tháng 7 2018

Câu hỏi của Trương Nguyễn Bảo Trân - Toán lớp 6 - Học toán với OnlineMath tham khảo

3 tháng 11 2017

Ta có: \(A=124\cdot\frac{1}{1984}\cdot\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)

\(\Rightarrow A=\frac{1}{16}\cdot\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\right]\)

Laji cos: \(B=\frac{1}{16}\cdot\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+\frac{1}{3}-\frac{1}{19}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(\Rightarrow B=\frac{1}{16}\cdot\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1984}-\frac{1}{17}-\frac{1}{18}-\frac{1}{19}-...-\frac{1}{2000}\right)\)

\(\Rightarrow B=\frac{1}{16}\cdot\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+...+\frac{1}{2000}\right)\right]\)

8 tháng 11 2017

Mk chịu thui =)) Sorry ^o^

6 tháng 4 2022

`Answer:`

\(A=124.\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)

\(=\frac{124}{1984}.\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\)

\(B=\frac{1}{1.17}+\frac{1}{2.18}+...+\frac{1}{1984.2000}\)

\(=\frac{1}{16}.\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\)

\(=\frac{1}{16}.[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)]\)

`=>A=B`

8 tháng 10 2017

a) = 1-1/2+1/2-1/3+...+1/99-1/100 =1 - 1/100 = 99/100