K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

\(M=\sin^6x+\cos^6x\)(1)

Có công thức: \(y=\sin^{2n}x+\cos^{2n}x\)

\(\Rightarrow\max\limits_y=1;\min\limits_y=\dfrac{1}{2^{n-1}}\)

\(\Rightarrow\left(1\right)\)\(\max\limits_M=1\)\(\min\limits_M=\dfrac{1}{2^2}=\dfrac{1}{4}\)

26 tháng 9 2020

Hỏi đáp Toán

NV
26 tháng 9 2020

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

26 tháng 9 2020

Hỏi đáp Toán

26 tháng 7 2019
https://i.imgur.com/BFDrd9Z.jpg
26 tháng 7 2019
https://i.imgur.com/ngTUtQr.jpg
3 tháng 6 2017

= (sin^2x + cos^2x)^2 - 3sin^4x.cos^2x - 3sin^2x.cos^4x
= 1 - 3/4sin^2 (2x).sin^2x - 3/4sin^2(2x).cos^2x
= 1 - 3/4sin^2(2x)

NV
29 tháng 8 2020

d/

\(2cos^22x+cos2x=4sin^22x.cos^2x\)

\(\Leftrightarrow2cos^22x+cos2x=2\left(1+cos2x\right)\left(1-cos^22x\right)\)

\(\Leftrightarrow2cos^32x+4cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x+2\right)\left(2cos^22x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-2\left(vn\right)\\2cos^22x-1=0\end{matrix}\right.\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow4x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)

NV
29 tháng 8 2020

c/

\(cos^4x+sin^6x=cos2x\)

\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)

\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)