K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

Đặt \(A=x^3-13x+m=\left(x^2+4x+3\right).\left(x+p\right)\)

Khi đó \(\left(x^2+4x+3\right)\left(x+p\right)=x^3+x^2\left(p+4\right)+x\left(4p+3\right)+3p\)

Sử dụng hệ số bất định được

\(\hept{\begin{cases}p+4=0\\4p+3=-13\\m=3p\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}p=-4\\m=-12\end{cases}}\)

Vậy m = -12

Câu còn lại tương tự.

2 tháng 11 2016

a, Gọi thương của đa thức là Q(x) ta có:

        A= x^3 - 13x + m = (x^2 + 4x + 3).Q(x)

               Với x=-1 ta có :   

                        A= (-1)^3 + 13.1 +m = 0

                          = -1 + 13 + m  = 0

 => m= 0 + 1 -13 

         = -12 

    Vậy m=-12               (Ở đây mình chọn x= -1 là vì -1 là ngiệm của đa thức chia để VP bằng không và nếu thay x vào cả 2 về thì biểu thức A có giá trị không đổi tương tự nếu đa thức chia có 2 nghiệm thì bạn thay x bằng các nghiệm đó theo 2 trường hợp và dễ dàng tìm ẩn số)

b,Giai tương tự

29 tháng 10 2017

a) B = \(x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x=1\)

Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.

A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)

\(\Leftrightarrow m=\dfrac{2}{3}\)

Các câu còn lại đơn giản, áp dụng như câu a là được.

29 tháng 10 2017

a ) Theo lược đồ hooc - ne

1 1 -3 6 -7+m 1 -2 4 -3+m

Để \(A\) chia hết cho B thì :

\(-3+m=0\Rightarrow m=3\)

Vậy \(m=3\)

29 tháng 10 2017

a) Ta có: \(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Ap dung Be du ta co:

\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

Câu b tương tự rồi nhé

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1