Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:
x1 + x2 = \(\dfrac{-b}{a}\) = 6
x1x2 = \(\dfrac{c}{a}\) = 1
a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )
=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)
=> A2 = 1(6 + 2) = 8
=> A = 2\(\sqrt{3}\)
b) bạn sai đề
Lời giải:
Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:
\(\Delta=(2-m)^2-4(m+3)>0\)
\(\Leftrightarrow m^2-8m-8>0(*)\)
Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)
ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)
\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)
\(\Rightarrow 2m^2-15m-13=0\)
\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn
\(\Delta'=\left(m+1\right)^2-\left(4m^2-2m+3\right)=-2m^2+4m-2\)
\(=-2\left(m-1\right)^2\le0\) \(\forall m\)
\(\Rightarrow\) Không tồn tại m để pt có 2 nghiệm phân biệt
Đề bài có vấn đề
\(\Delta'=\left(-m\right)^2-2m^2+1\)
=\(m^2-2m^2+1\)
=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)
theo vi-et ta có \(x_1+x_2=-2m\)
\(x_1.x_2=2m^2-1\)
theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)
\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4
\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4
\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4
\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4
\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4
\(\Leftrightarrow4m^2+6m\) =4
\(\Leftrightarrow4m^2+6m-4=0\)
\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)
phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)
với \(x_2=-7\) thỏa mãn đk
bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng
Gọi \(a=x_1\) và \(b=x_2\) gõ cho lẹ
\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)
\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)
\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)
\(A=-4m^3+6m-2=-2\)
\(\Leftrightarrow4m^3-6m=0\)
\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)
Chắc đề là \(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2\) mới đúng
\(\Delta'=\left(m-1\right)^2-\left(2m-6\right)=\left(m-2\right)^2+3>0\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-6\end{matrix}\right.\) với \(m\ne3\)
\(A=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2-2\)
\(A=\left[\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2=\left(\dfrac{4\left(m-1\right)^2}{2m-6}-2\right)^2-2\)
\(A=\left(2m-\dfrac{8}{m-3}\right)^2-2\)
\(A\) nguyên \(\Leftrightarrow\dfrac{8}{m-3}\) nguyên \(\Leftrightarrow m-3=Ư\left(8\right)\)
\(\Leftrightarrow m=...\)