K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2024

Đặt: \(f\left(x\right)=\left(m^2-3m-4\right)x^2-2\left(m-4\right)x+3\).

Khi \(\left[{}\begin{matrix}m=-1\\m=4\end{matrix}\right.\) thì \(\left[{}\begin{matrix}f\left(x\right)=10x+3\\f\left(x\right)=-12x+3\end{matrix}\right.\). Dễ thấy \(f\left(x\right)< 0\) luôn có nghiệm.

Khi \(m\notin\left\{-1;4\right\}\)

Để \(f\left(x\right)< 0\) vô nghiệm thì \(f\left(x\right)\ge0\forall x\in R\)

Khi đó: \(\left\{{}\begin{matrix}m^2-3m-4\ge0\\\Delta'=\left[-\left(m-4\right)\right]^2-\left(m^2-3m-4\right)\cdot3< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-1\\m\ge4\end{matrix}\right.\\-2m^2+m+28< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-1\\m\ge4\end{matrix}\right.\\\left[{}\begin{matrix}m< -\dfrac{7}{2}\\m>4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m< -\dfrac{7}{2}\\m>4\end{matrix}\right.\)

Vậy: \(f\left(x\right)< 0\) vô nghiệm khi \(m\in\left(-\infty;-\dfrac{7}{2}\right)\cup\left(4;+\infty\right)\)

4 tháng 3 2019

Lười làm lắm cứ xét từng khoản là được

Đầu tiên giải bất thứ nhất

Ở bất thứ 2 xét 2 trường hợp

- TH 1: \(m\le0\)

- TH2: \(m>0\)

   + \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)

   +\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)

NV
22 tháng 2 2020

Để BPT nghiệm đúng với mọi x thì:

a/ \(\left\{{}\begin{matrix}2m^2-3m-2< 0\\\Delta'=\left(m-2\right)^2+2m^2-3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-2< 0\\3m^2-7m+2\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{2}< m< 2\\\frac{1}{3}\le m\le2\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}\le m< 2\)

b/ \(\left(m+4\right)x^2-2mx+2m-6< 0\)

\(\left\{{}\begin{matrix}m+4< 0\\\Delta'=m^2-\left(m+4\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\-m^2-2m+24< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\\left[{}\begin{matrix}m< -6\\m>4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

18 tháng 12 2022

a: Để BPT có nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\2>0\end{matrix}\right.\Leftrightarrow\left(m-9\right)^2-8\left(m^2+3m+4\right)< =0\)

=>m^2-18m+81-8m^2-24m-32<=0

=>-7m^2-42m+49<=0

=>x<=-7 hoặc x>=1

b: \(\Leftrightarrow3x^2+\left(m+6\right)x-m+5>0\)

Để BPT có nghiệm thì (m+6)^2-12(-m+5)<0

=>m^2+12m+36+12m-60<0

=>m^2+24m-24<0

=>\(-12-2\sqrt{42}< m< -12+2\sqrt{42}\)