≤ 0 với mọi x 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2020

\(\Leftrightarrow\left(x^2+1\right)^2-x\sqrt{x^2+2}-4\le-m\)

\(\Leftrightarrow x^4+2x^2-x\sqrt{x^2+2}-3\le-m\)

Đặt \(x\sqrt{x^2+2}=t\Rightarrow t^2=x^4+2x^2\)

\(0\le x\le1\Rightarrow0\le t\le\sqrt{3}\)

BPT trở thành: \(t^2-t-3\le-m\) ; \(\forall t\in\left[0;\sqrt{3}\right]\)

Xét \(f\left(t\right)=t^2-t-3\) trên \(\left[0;\sqrt{3}\right]\)

\(-\frac{b}{2a}=\frac{1}{2}\in\left[0;\sqrt{3}\right]\)

\(f\left(0\right)=-3;f\left(\frac{1}{2}\right)=-\frac{13}{4};f\left(\sqrt{3}\right)=-\sqrt{3}\)

\(\Rightarrow\max\limits_{\left[0;\sqrt{3}\right]}f\left(t\right)=-\sqrt{3}\)

\(\Rightarrow-\sqrt{3}\le-m\Rightarrow m\le\sqrt{3}\)

NV
29 tháng 4 2020

\(a=1>0;\) \(\Delta'=\left(m-1\right)^2-m+2=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) ;\(\forall m\)

Để BPT thỏa mãn với \(\forall x\in\left[0;1\right]\Leftrightarrow x_1\le0< 1\le x_2\)

Đặt \(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-2\le0\\1-m\le0\end{matrix}\right.\)

\(\Rightarrow1\le m\le2\)

9 tháng 5 2017

f(x) là parabol quay lên --> phải có nghiệm 0, 1

hệ số a=1

=> \(\Delta>0\Rightarrow m^2-m+3>0\)

=> đúng với mọi m

f(x) phải có nghiệm nằm ngoài [0,1]

f(x) pa ra pol quay lện

f(0) <=0=m-2 =0 => m<= 2

f(1) <=0=0=> 1-2(m-1) +m-2 =0 => 1-m<=0 => m>=1

Kết luận

\(1\le m\le2\)

19 tháng 1 2017

a, Với m=2 \(\Rightarrow\) phương trình (1)

\(\Leftrightarrow\) \(x^2-4x+4\) =0

\(\Leftrightarrow x=2\)

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

DD
15 tháng 9 2021

Bài 2. 

\(\left(m^2-3m+2\right)x+m-1>0,\forall x\inℝ\)

\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x>1-m,\forall x\inℝ\)(1)

Với \(m=1\):

\(0x>0\)vô lí. 

Với \(m=2\)\(0x>-1\)đúng với mọi \(x\inℝ\).

Với \(m\ne1,m\ne2\): (1) tương đương với: 

\(x>-\frac{1}{m-2}\)hoặc \(x< -\frac{1}{m-2}\)khi đó không đúng với mọi \(x\)thuộc \(ℝ\).

Vậy \(m=2\)thỏa mãn yêu cầu bài toán. 

DD
15 tháng 9 2021

Bài 1. 

\(n^3+3n^2-4n+1=n^3-n^2+4n^2-4n+1\)

\(=n^2\left(n-1\right)+4n\left(n-1\right)+1=n\left(n-1\right)\left(n+4\right)+1\)

Có \(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên là số chẵn. 

Do đó \(n\left(n-1\right)\left(n+4\right)+1\)là số lẻ. 

Khi đó không thể chia hết cho \(6\).

Do đó mệnh đề đã cho là sai. 

4 tháng 9 2021

help me