K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

\(f'\left(x\right)=6\left[x^2+\left(m-1\right)x+\left(m-2\right)\right]=0\) 

\(\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+\left(m-2\right)=0\)

Hàm số có cực đại và cực tiểu 

\(\Leftrightarrow g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\)

                                                        \(\Leftrightarrow m\ne3\)

Thực hiện phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) ta có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(y=f\left(x\right)\) đạt cực trị tai \(x_1,x_2\)

Ta có : \(g\left(x_1\right)=g\left(x_2\right)=0\) nên suy ra :

\(y_1=f\left(x_1\right)=-\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\)

\(y_1=f\left(x_2\right)=-\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\)

=> Đường thẳng đi qua cực đại và cực tiểu là \(\left(\Delta\right)\) : \(y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Ta có  \(\left(\Delta\right)\)  song song với đường thẳng \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne3;a<0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a<0\\m=\pm\sqrt{a}\end{cases}\)

Vậy : Nếu a<0 thì \(m=3\pm\sqrt{-a}\)

         Nếu \(a\ge0\) thì không tồn tại m thỏa mãn

        

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)

Suy ra đường thẳng qua cực đại, cực tiểu là :

\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

ta có \(\Delta\) song song với đường \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)

Vậy : Nếu \(a\ge0\) thì không tồn tại m

         Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)

 

24 tháng 3 2016

Ta có : \(f'\left(x\right)=6\left[x^2+\left(m-1\right)x+m\left(1-2m\right)\right]=0\)

                      \(\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m\left(1-2m\right)=0\)

Hàm số có cực đại và cực tiểu => g(x) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(3m-1\right)^2>0\Leftrightarrow m\ne\frac{1}{3}\)

Thực hiện phép chia f(x) cho g(x) ta  có 

\(f\left(x\right)=\left(2x+m-1\right)g\left(x\right)-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Với \(m\ne\frac{1}{3}\) thì phương trình g(x) = 0 có 2 nghiệm phân biệt \(x_1,x_2\) 

và hàm số :

\(y=f\left(x\right)\) đạt cực trị tại  \(x_1,x_2\) 

Ta có : \(\text{g}\left(x_1\right)=g\left(x_2\right)=0\) nên suy ra

\(y_1=f\left(x_1\right)=-\left(m-3\right)^2x_1+m\left(m-1\right)\left(1-2m\right)\)

\(y_2=f\left(x_1\right)=-\left(m-3\right)^2x_2+m\left(m-1\right)\left(1-2m\right)\)

Đường thẳng đi qua cực đại, cực tiểu là \(\left(\Delta\right)\)\(y=-\left(m-3\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Để cực đại , cực tiểu nằm trên đường thẳng (d) : y=-4x thì \(\left(\Delta\right)\equiv\left(d\right)\)

\(\Leftrightarrow\begin{cases}-\left(3m-1\right)^2=-4\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)

\(\Leftrightarrow\begin{cases}\left(3m-1-2\right)\left(3m-1+2\right)=0\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)

\(\Leftrightarrow m=1\)

 
 
 
 
23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m\left(1-2m\right)\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m\left(1-2m\right)=0\)

Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt                                          \(\Leftrightarrow\Delta_g=\left(m-1\right)^2-4m\left(1-2m\right)=\left(3m-1\right)^2>0\Leftrightarrow m\ne\frac{1}{3}\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m+1\right)\right]-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Với \(m\ne\frac{1}{3}\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  

do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) suy ra đường thẳng qua cực đại, cực tiểu là 

\(\Delta:y=-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Ta có cực địa, cực tiểu nằm trên đường thẳng \(y=-4x\)

\(\Leftrightarrow\begin{cases}-\left(3m-1\right)^2=-4\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)\(\Leftrightarrow\begin{cases}\left|3m-1\right|=2\\m\in\left\{0;1;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow m=1\)

27 tháng 3 2016

Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=3x^3+2mx+7=0\) có 2 nghiệm phân biệt

<=> \(\Delta'=m^2-21>0\Leftrightarrow\left|m\right|>\sqrt{21}\)

Thực hiện phép chia f(x) cho f'(x) ta có :

\(f\left(x\right)=\frac{1}{9}\left(3x+m\right)f'\left(x\right)+\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)

Với \(\left|m\right|>\sqrt{21}\) thì phương trình f'(x) = 0 có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) suy ra:

\(y_1=f\left(x_1\right)=\frac{2}{9}\left(21-m^2\right)x_1+3-\frac{7m}{9}\)

\(y_2=f\left(x_2\right)=\frac{2}{9}\left(21-m^2\right)x_2+3-\frac{7m}{9}\)

=> Đường thẳng đi qua cực đại, cực tiểu là :

\(\left(\Delta\right):y=\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)

Ta có \(\left(\Delta\right)\perp y=3x-7\Leftrightarrow\frac{2}{3}\left(21-m^2\right).3=-1\Leftrightarrow m^2=\frac{45}{2}>21\)

                                        \(\Leftrightarrow m=\pm\frac{3\sqrt{10}}{2}\)

 

 

26 tháng 3 2016

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài

27 tháng 3 2016

Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)

Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :

\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)

\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)

=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)

Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)

\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)

Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)

                                                        \(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)

                                                        \(\Leftrightarrow m=0\)

 

27 tháng 3 2016

\(y'=2x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại, cực tiểu

\(\Delta'=9\left(m+1\right)^2=3.9>0\)

     \(=\left(m+1\right)^2-3>0\)

\(\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có : \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

Gọi tọa độ điểm cực đại và cực tiểu là \(\left(x_1;y_1\right)\) và  \(\left(x_2;y_2\right)\)

=> \(y_1=-2\left(m^2+2m-2\right)x_1+4m+1\)

   \(y_2=-2\left(m^2+2m-2\right)x_2+4m+1\)

Vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng \(y=\frac{1}{2}x\) ta có điều kiện cần là :

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\)

\(\Leftrightarrow m^2+2m-2=1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Theo định lí Viet ta có \(\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=3\end{cases}\)

Khi m =1 => phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2x+5\)

Tọa độ trung điểm cực đại và cực tiểu là :

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiểu là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\Rightarrow m=1\) thỏa mãn

Khi m=-3 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x-11

(làm tương tự cách như trên)

 
29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)