Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt có hai nghiệm thì trước tiên \(m\neq 0\)
\(\Delta=(2m^2-m-1)^2+4m(2m-1)>0\)
\(\Leftrightarrow (2m^2-m+1)^2>0\) (luôn đúng với mọi \(m\in\mathbb{R}\neq 0\) )
Khi đó áp dụng công thức nghiệm bậc 2 ta có hai nghiệm của pt là:
\(x_1=\frac{m+1-2m^2+2m^2-m+1}{2m}=\frac{1}{m}\)
\(x_2=\frac{m+1-2m^2-2m^2+m-1}{2m}=1-2m\)
(Vấn đề \(x_1,x_2\) số nào lớn hơn không quan trọng)
Để yêu cầu đề bài thỏa mãn, hai nghiệm của pt đều phải nhỏ hơn 5
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{m}< 5\\ 1-2m< 5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{1}{5}\\ m> -2\end{matrix}\right.\Leftrightarrow m> \frac{1}{5}\)
a: TH1: m=2
Pt sẽ là 3x-4=0
=>x=4/3(loại)
TH2: m<>2
\(\text{Δ}=\left(5-m\right)^2-4\left(m-2\right)\left(m-6\right)\)
\(=m^2-10m+25-4\left(m^2-8m+12\right)\)
\(=m^2-10m+25-4m^2+32m-48\)
\(=-3m^2+22m-23\)
Để phương trình có hai nghiệm phân biệt thì -3m^2+22m-23>0
=>\(\dfrac{11-2\sqrt{13}}{3}< x< \dfrac{11+2\sqrt{13}}{3}\)
a: |x1-x2|=2
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\left(\dfrac{m-5}{m-2}\right)^2-4\cdot\dfrac{m-6}{m-2}=4\)
\(\Leftrightarrow\dfrac{\left(m-5\right)^2-4\left(m^2-8m+12\right)}{\left(m-2\right)^2}=4\)
=>\(m^2-10m+25-4m^2+32m-48=4m^2-16m+16\)
=>-7m^2+38m-39=0
hay \(m=\dfrac{19\pm2\sqrt{22}}{7}\)
c: TH1: x1<x2<0<1
=>x1+x2<0 và x1x2>0
=>(m-5)/(m-2)<0 và (m-6)/(m-2)>0
\(\Leftrightarrow\left\{{}\begin{matrix}2< m< 5\\\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
TH2: 0<x1<x2<1
=>x1x2<1 và 0<x1+x2<2
=>0<m-5/m-2<2 và m-6/m-2<1
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5-2m+4}{m-2}< 0\\\dfrac{m-6-m+2}{m-2}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+1}{m-2}>0\\\dfrac{-4}{m-2}< 0\end{matrix}\right.\)
=>m>2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
a, Ta có : \(mx^3-x^2+2x-8m=0\)
\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)
\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)
- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1
<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .
- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)
\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)
- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)
- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)
- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )
Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)
- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)
Vậy ...
b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)
\(=m^2-4m+4-m^2+m+3m-3=1>0\)
Nên phương trình có 2 nghiệm phân biệt .
Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)
- Để \(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)
\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)
- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)
Cho f(m) = 0 => m = 3
m-1 = 0 => m = 1
- Lập bảng xét dầu :
m.............................1..........................................3...................................
2m-6............-..........|......................-.....................0...................+.................
m-1..............-............0...................+.....................|....................+.................
f(m).............+...........||..................-........................0................+....................
- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)
\(\Leftrightarrow1< m< 3\)
Vậy ...
\(\Delta=\left(2m+1\right)^2-4\left(m-2\right)\left(3m-3\right)=-8m^2+4m0-23\ge0\) ;\(m\ne2\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m-1}{m-2}\\x_1x_2=\frac{3m-3}{m-2}\end{matrix}\right.\)
Do \(x_2\) là nghiệm nên: \(\left(m-2\right)x^2_2-\left(2m+1\right)x_2+3m-3=0\)
\(\Leftrightarrow\left(m-2\right)x_2^2=\left(2m+1\right)x_2-3m+3\)
Thay vào bài toán:
\(\left(2m+1\right)x_1+\left(2m+1\right)x_2-3m+3=m-1\)
\(\Leftrightarrow\left(2m+1\right)\left(x_1+x_2\right)=4m-4\)
\(\Leftrightarrow\frac{\left(2m+1\right)^2}{m-2}=4m-4\Leftrightarrow\left(2m+1\right)^2=\left(4m-4\right)\left(m-2\right)\)
\(\Leftrightarrow4m^2+4m+1=4m^2-12m+8\)
\(\Leftrightarrow16m=7\Rightarrow m=\frac{7}{16}\)
Bạn tự thay vào điều kiện \(\Delta\) kiểm tra xem có thỏa mãn không
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)
\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)
\(\Rightarrow-1< m\le2\)
Câu 1b, 2, 3 làm tương tự
Câu 4:
\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)
\(\Rightarrow m>-1\)
câu b tương tự
câu c chia 2 thợp :th1 m=0
TH2 m≠0 rồi cứ triển thôi