Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)=\((m)^{2} -4(m-2)=m^2-4m+8=(m-2)^2+4 >0\)với mọi m \(\Rightarrow\)pt (1) luôn có nghiệm phân biệt với mọi m.
b)Do pt (1) có 2 ng pb với mọi m \(\Rightarrow\)áp dụng Vi_et ta có:
\(\begin{cases} x1+x2=m\\ x1.x2=m-2\end{cases}\).Pt (1) trở thành :
\(2[(x1+x2)^2-2x1.x2]-x1.x2=2(m-\frac{5}{4})^2+\frac{55}{8} \geq \frac{55}{8}\)với mọi m. GTNN của (1) là 55/8 khi và chỉ khi m=5/4
Để pt có 2 nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)
\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)
\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)
\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)
Đặt \(\frac{1}{m-1}=t\)
\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)
\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)
\(\Rightarrow m_{max}=5\)
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4>0;\forall m\)
Pt luôn có 2 nghiệm pb thỏa \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(A=\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}\)
\(=\sqrt{4\left(m-1\right)^2-2\left(m-3\right)}\)
\(=\sqrt{4m^2-10m+10}=\sqrt{4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)
\(A_{min}=\frac{\sqrt{15}}{2}\)
\(\Delta'=m^2-4\ge0\Rightarrow m\le-2\) (do m âm)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m>0\\x_1x_2=4>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=3\Leftrightarrow\left(\frac{x_1}{x_2}\right)^2+2\left(\frac{x_1}{x_2}\right)\left(\frac{x_2}{x_1}\right)+\left(\frac{x_2}{x_1}\right)^2-2=3\)
\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=5\Leftrightarrow\frac{x_1}{x_2}+\frac{x_2}{x_1}=\sqrt{5}\) (do \(x_1;x_2>0\))
\(\Leftrightarrow x_1^2+x_2^2=\sqrt{5}x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\sqrt{5}x_1x_2\)
\(\Leftrightarrow4m^2-8=4\sqrt{5}\)
\(\Leftrightarrow m^2=2+\sqrt{5}\)
\(\Leftrightarrow m=-\sqrt{2+\sqrt{5}}\)