\(x^4-mx^3+\left(m+3\right)x^2-mx+m+2=0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 11 2019

a/ \(mx^2-4x-3m+6=0\)

Để pt có nghiệm duy nhất

\(\Rightarrow\left[{}\begin{matrix}m=0\\\Delta'=4-m\left(-3m+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\3m^2-6m+4=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow m=0\)

b/ \(\left[{}\begin{matrix}m=0\\\Delta'=\left(m+1\right)^2-m\left(m+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

c/ \(2x^2-2=mx^2+x\Leftrightarrow\left(m-2\right)x^2+x+2=0\)

Để pt có nghiệm duy nhất

\(\Rightarrow\left[{}\begin{matrix}m-2=0\\\Delta=1-8\left(m-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\frac{17}{8}\end{matrix}\right.\)

NM
21 tháng 12 2020

ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)

Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1

th1: (1) có nghiệm kép

\(\Rightarrow m=\frac{3}{2}\)

th2: (1) có 1 nghiệm x=1 

\(\Rightarrow m=-3\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Lời giải:

\(27^{mx^3-2x^2+3x-2}=\frac{1}{9^{-mx^2-x+2}}\Leftrightarrow 3^{3(xm^3-2x^2+3x-2)}=3^{2(mx^2+x-2)}\)

\(\Leftrightarrow 3(mx^3-2x^2+3x-2)=2(mx^2+x-2)\)

\(\Leftrightarrow 3mx^3-x^2(2m+6)+7x-2=0\)

\(\Leftrightarrow (3x-2)(mx^2-2x+1)=0\)

Để PT ban đầu có ba nghiệm phân biệt thì \(mx^2-2x+1=0\) phải có hai nghiệm phân biệt khác \(\frac{2}{3}\). Khi đó:

\(\left\{\begin{matrix} m\neq 0\\ m(\frac{2}{3})^2-\frac{4}{3}+1\neq 0\\ \Delta' =1-m>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m\neq 0\\ m\neq \frac{3}{4}\\ m<1\end{matrix}\right.\)

Đáp án D chính xác nhất, nhưng chưa quét hết nghiệm.

NV
25 tháng 2 2020

a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)

- Với \(m=1\) BPT vô nghiệm

- Với \(m=-1\) BPT luôn đúng

- Với \(m\ne\pm1\) BPT luôn có nghiệm

Vậy \(m=1\) thì BPT vô nghiệm

b/ \(\Leftrightarrow\left(m^2-3m+2\right)x\ge m-1\Leftrightarrow\left(m-1\right)\left(m-2\right)x\ge m-1\)

- Với \(m\ne\left\{1;2\right\}\) BPT luôn có nghiệm

- Với \(m=1\Rightarrow0\ge0\) BPT có nghiệm

- Với \(m=2\Rightarrow0\ge1\) BPT vô nghiệm

Vậy \(m=2\) thì BPT vô nghiệm

NV
25 tháng 2 2020

c/ \(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)

- Với \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) BPT vô nghiệm

- Với \(-2< m< 2\) BPT luôn đúng

Vậy \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) thì BPT vô nghiệm

d/ \(\Leftrightarrow\left(m+2\right)x>m^2+4m+4=\left(m+2\right)^2\)

Với \(m=-2\) BPT vô nghiêm

Với \(m\ne-2\) BPT luôn có nghiệm

Vậy \(m=-2\) thì BPT vô nghiệm