Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 4 nghiệm phân biệt của phương trình là : \(x_1;x_2;x_3;x_4\)
Đặt \(x^2=y\ge0\), ta có phương trình :
\(\Leftrightarrow y^2-\left(3m+5\right)y+\left(m+1\right)^2=0\left(1\right)\)
Ta phải tìm m sao cho (1) có hai nghiệm phân biệt \(0 < y1 < y2\)
Khi đó (1) có 4 nghiệm là : \(x_1=-\sqrt{y_2};x_2=-\sqrt{y_1};x_3=-\sqrt{y_1};x_4=-\sqrt{y_2}\)
Rõ ràng \(x2 < x2 < x3 < x4\)
Theo đầu bài thì bốn nghiệm lập thành cấp số cộng, nên :
\(\Rightarrow x_3+x_1=2x_2\) V \(x_4+x_1=2x_3\)
\(\Leftrightarrow\sqrt{y_1}-\sqrt{y_2}=2\sqrt{y_1}\)
\(\Rightarrow3\sqrt{y_1}=\sqrt{y_2}\)
\(\Leftrightarrow9y_1=y_2\) (*)
Áp dụng Viet cho phương trình (1) ta có hệ :
\(\begin{cases}\Delta=\left(3m+5\right)^2-4\left(m+1\right)^2>0\\S=y_1+y_2=10y_1=3m+5\\P=y_1y_2=9y_1^2=\left(m+1\right)^2\end{cases}\)
\(\Leftrightarrow\begin{cases}m=5\\m=-\frac{25}{19}\end{cases}\)
Vì 3 nghiệm phân biệt : \(x_1,x_2,x_3\) lập thàng cấp số cộng, nên ta có thể đặt :
\(x_1=x_0-d,x_2=x_0;x_3=x_0+d\left(d\ne0\right)\). Theo giả thiết ta có :
\(x^3+3x^2-\left(24+m\right)x-26-n=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)
\(=\left(x-x_0+d\right)\left(x-x_0\right)\left(x-x_0-d\right)\)
\(=x^3-3x_0x^2+\left(3x^2_0-d^2\right)x-x^3_0+x_0d^2\) với mọi x
Đồng nhất hệ số ở hai vế của phương trình ta có hệ :
\(\begin{cases}-3x_0=3\\3x_0^2-d^2=-\left(24+m\right)\\-x_0^3+x_0d^2=-26-n\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=-1\\3-d^2=-24-m\\1-d^2=-26-n\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=-1\\m=n\end{cases}\)
Vậy với m = n thì 3 nghiệm phân biệt của phương trình lập thành cấp số cộng
1.
Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)
Mà \(x_1+x_2+x_3=3m\)
\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)
Thay lại pt ban đầu:
\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)
\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)
- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)
Vậy \(m=1\)
Câu 1: Gọi 3 số là a;b;c
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
Giả sử 4 nghiệm phân biệt của phương trình là x1,x2,x3,x4.đặtx2=y≥0, ta được phương trình y2-(3m+5)y+(m+1)2=0(1)
Ta phải tìm m sao cho (1) có hai nghiệm dương phân biệt 0 < y1 < y2. Khi đó thì (1) có bốn nghiệm là: x1=-√(y2),x2=-√(y1,) x3=√(y1),x4=√(y2).
Theo đầu bài bốn nghiệm lập thành một cấp số cộng, nên x3+x1=2x2 và x4+x2=2x3
Áp dụng định lý Vi-et cho phương trình (1). Ta có hệ:
Δ = 3 m + 5 2 − 4 m + 1 2 > 0 S = 3 m + 5 > 0 P = m + 1 2 > 0 ⇔ 5 m 2 + 22 m + 21 > 0 m > − 5 3 m ≠ − 1 ⇔ m > − 7 5 m < − 3 m > − 5 3 m ≠ − 1
⇒ m > − 7 5 và m ≠ − 1
Thay 9 y 1 = y 2 vào định lí Viet y 1 + y 2 = 3 m + 5 y 1 . y 2 = m + 1 2
Giải (*)
19 m 2 − 70 m − 125 = 0 ⇔ m = 5 m = − 25 19
Chọn B
\(\left(x\ne0\right)đặt:x+\dfrac{1}{x}=t\Leftrightarrow x^2-xt+1=0\Rightarrow\Delta=t^2-4\ge0\Rightarrow t\in(-\text{∞};-2]\cup[2;+\text{∞})\) \(pt:x^2+\dfrac{1}{x^2}+\left(1-3m\right)\left(x+\dfrac{1}{x}\right)+3m=0\left(1\right)\)
\(\left(1\right)\Leftrightarrow t^2+\left(1-3m\right)t+3m-2=0\left(2\right)\)
\(\left(1\right)\) \(có\) \(nghiệm\Leftrightarrow\left(2\right)\) \(có\) \(nghiệm\) \(thuộc:(-\text{∞};-2]\cup[2;+\text{∞})\)
\(\left(2\right)\Leftrightarrow\left(t-1\right)\left(t-3m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin(-\text{∞};-2]\cup[2;+\text{∞})\\t=3m-2\end{matrix}\right.\)
\(\Rightarrow t=3m-2\in(-\text{∞};-2]\cup[2;+\text{∞})\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3m-2< -2\\t=3m-2>2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow m\in(-\text{∞};0)\cup\left(\dfrac{4}{3};+\text{∞}\right)\)