K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Đáp án: B

(m - 1) x 2  - 2mx + 3m - 2 = 0 (*)

Để phương trình (*) có hai nghiệm dương phân biệt thì:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

NV
1 tháng 5 2020

1.

\(\Delta'=1-m>0\Rightarrow m< 1\)

Để pt có 2 nghiệm t/m đề bài

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)

2. Để pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)

Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)

Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)

3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)

Để pt có 2 nghiệm thỏa mãn đề bài

\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)

\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)

NV
10 tháng 5 2020

a.

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)>0\\x_1+x_2=\frac{2\left(m-1\right)}{m+1}>0\\x_1x_2=\frac{3m-3}{m+1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\left(m-1\right)\left(m+2\right)< 0\\\frac{m-1}{m+1}>0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2< m< 1\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-2< m< -1\)

b. Không rõ đề

c. \(\Delta'=\left(m+1\right)^2-\left(m+7\right)< 0\)

\(\Leftrightarrow m^2+m-6< 0\Leftrightarrow-3< m< 2\)

d. \(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m+7\right)\ge0\\x_1+x_2=-2\left(m+1\right)< 0\\x_1x_2=m+7>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-6\ge0\\m>-1\\m>-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-3\\m\ge2\end{matrix}\right.\\m>-1\\m>-7\end{matrix}\right.\) \(\Rightarrow m\ge2\)

10 tháng 5 2020

Câu b khúc đó m-1

Với m=1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)

Với m1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx

f(x)=0f(x)=0 có nghiệm khi mà Δ=m22m(m+1)0Δ′=m2−2m(m+1)≥0

m22m0m(m+2)0⇔−m2−2m≥0⇔m(m+2)≤0

2m0⇔−2≤m≤0

Tóm lại để f(x)=0f(x)=0 có nghiệm thì m[2;0]

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

NV
18 tháng 4 2020

Để (1) có 2 nghiệm thỏa mãn \(x_1< 2< x_2\)

\(\Leftrightarrow f\left(2\right)< 0\Leftrightarrow2^2-2.2-m< 0\)

\(\Leftrightarrow-m< 0\Rightarrow m>0\)