K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:

Để pt có hai nghiệm $x_1,x_2$ thì:

\(\Delta'=4^2-6m>0\Leftrightarrow m< \frac{8}{3}\)

Áp dụng định lý Viete cho pt bậc 2 thì:

\(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=\frac{3m}{2}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=15\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=15\)

\(\Leftrightarrow (-4)^2-3m=15\Leftrightarrow m=\frac{1}{3}\) (thỏa mãn)

Vậy \(m=\frac{1}{3}\)

4 tháng 5 2018

Ta có: \(\Delta'=\)42 -2.3m =16-6m. Để phướng trình có 2 nghiệm, \(\Delta'\ge0\)

<=> 16-6m \(\ge\)0 <=> -6m\(\ge\)-16 <=> m\(\le\)\(\dfrac{8}{3}\)

Ta có : x12 +x22=15 <=> x12+2x1x2+x22-2x1x2= (x1+x2)2- 2x1x2

Theo hệ thức Vi-ét ta có: x1+x2=-4 ; x1x2=\(\dfrac{3m}{2}\)

=> \(\left(-4\right)^2-2.\dfrac{3m}{2}\)=15 <=> 16-3m=15 <=> -3m=-1 <=> m=\(\dfrac{1}{3}\) (thỏa mãn)

Vậy m= \(\dfrac{1}{3}\) thỏa mãn yêu cầu đề bài

18 tháng 4 2017

Giải:

Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)

Từ đó suy ra \(m\ne1,5\left(1\right)\)

Mặt khác, theo định lý Viet và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)

Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\) 

Ta được \(m=-2\) và \(m=4,125\left(2\right)\)

Đối chiếu điều kiện  \(\left(1\right)\)  và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt

2 tháng 4 2018

Câu 1 nè:Phương trình trình trên có 2 nghiệm phân biệt khi ∆>0 tức là (2m-1)²-8(m-1) =(2m-3)² >0 <=>m khác 2/3 
Từ đó ta tính đc 
x1=-1/2 
x2=1-m hoặc x1=1-m,x2=-1/2 
bạn thay vào 
3x1-4x2=11 là tìm ra m,chú ý xét cả 2 trường hợp,nếu tìm ra m=3/2 thì loại. 

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm

17 tháng 4 2019

đầu tiên bn tính đenta

cho đenta lớn hơn hoặc = 0 thì pt có nghiệm

b, từ x1-2x2=5

=> x1=5+2x2

chứng minh đenta lớn hơn 0

theo hệ thức viet tính đc x1+x2=..

x1*x2=....

thay vào cái 1 rồi vào 2 là đc