Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
Bạn áp dụng các kết luận sau:
Hệ phương trình \(\hept{\begin{cases}ax+by=c\\a'x+b'y=c'\end{cases}}\left(a,b,c,a',b',c'\ne0\right)\)
+) Vô nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
+) Có nghiệm duy nhất nếu \(\frac{a}{a'}\ne\frac{b}{b'}\)
+) Có vô số nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Như vậy hệ phương trình \(\hept{\begin{cases}mx+4y=20\\x+my=10\end{cases}}\left(m\ne0\right)\)
+) Vô nghiệm nếu \(\frac{m}{1}=\frac{4}{m}\ne\frac{20}{10}\Rightarrow\hept{\begin{cases}m^2=4\\m\ne2\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm2\\m=2\end{cases}}\Rightarrow m=-2\)
+) Có nghiệm duy nhất nếu \(\frac{m}{1}\ne\frac{4}{m}\Rightarrow m^2\ne4\Rightarrow m\ne\pm2\)
+) Vô số nghiệm nếu \(\frac{m}{1}=\frac{4}{m}=\frac{20}{10}\Rightarrow m=2\)
\(\hept{mx+y=3m-1x+my=m+1}\hept{\begin{cases}y=3m-1-mx\\x+m\left(3m-1-mx\right)=m+1y\end{cases}}\)
\(\left(1\right)\hept{\begin{cases}x+3m^2-m-m^2+x=m+1\\x\left(1-m^2\right)=-3m^2+2m+1\\\left(m-1\right)\left(m+1\right).x=\left(3m-1\right)\left(m-1\right)\end{cases}}\)
\(TH_1\): Để hệ có một nghiệm duy nhất ta có :
- m -1 khác 0
- m + 1 khác 0
- \(x=\frac{3m-1}{m+1}\)
\(TH_2\): Để hệ có vô nghiệm thì
\(\hept{\begin{cases}m-1=0\\m-1\end{cases}}\)
\(TH_3:\)Để hệ có vô số nghiệm thì :
\(\hept{\begin{cases}m+1=0\\m-1=0\end{cases}}\)
rep it me